xref: /aosp_15_r20/external/eigen/unsupported/test/EulerAngles.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Tal Hadad <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 #include <unsupported/Eigen/EulerAngles>
13 
14 using namespace Eigen;
15 
16 // Unfortunately, we need to specialize it in order to work. (We could add it in main.h test framework)
17 template <typename Scalar, class System>
verifyIsApprox(const Eigen::EulerAngles<Scalar,System> & a,const Eigen::EulerAngles<Scalar,System> & b)18 bool verifyIsApprox(const Eigen::EulerAngles<Scalar, System>& a, const Eigen::EulerAngles<Scalar, System>& b)
19 {
20   return verifyIsApprox(a.angles(), b.angles());
21 }
22 
23 // Verify that x is in the approxed range [a, b]
24 #define VERIFY_APPROXED_RANGE(a, x, b) \
25   do { \
26   VERIFY_IS_APPROX_OR_LESS_THAN(a, x); \
27   VERIFY_IS_APPROX_OR_LESS_THAN(x, b); \
28   } while(0)
29 
30 const char X = EULER_X;
31 const char Y = EULER_Y;
32 const char Z = EULER_Z;
33 
34 template<typename Scalar, class EulerSystem>
verify_euler(const EulerAngles<Scalar,EulerSystem> & e)35 void verify_euler(const EulerAngles<Scalar, EulerSystem>& e)
36 {
37   typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
38   typedef Matrix<Scalar,3,3> Matrix3;
39   typedef Matrix<Scalar,3,1> Vector3;
40   typedef Quaternion<Scalar> QuaternionType;
41   typedef AngleAxis<Scalar> AngleAxisType;
42 
43   const Scalar ONE = Scalar(1);
44   const Scalar HALF_PI = Scalar(EIGEN_PI / 2);
45   const Scalar PI = Scalar(EIGEN_PI);
46 
47   // It's very important calc the acceptable precision depending on the distance from the pole.
48   const Scalar longitudeRadius = std::abs(
49     EulerSystem::IsTaitBryan ?
50     std::cos(e.beta()) :
51     std::sin(e.beta())
52     );
53   Scalar precision = test_precision<Scalar>() / longitudeRadius;
54 
55   Scalar betaRangeStart, betaRangeEnd;
56   if (EulerSystem::IsTaitBryan)
57   {
58     betaRangeStart = -HALF_PI;
59     betaRangeEnd = HALF_PI;
60   }
61   else
62   {
63     if (!EulerSystem::IsBetaOpposite)
64     {
65       betaRangeStart = 0;
66       betaRangeEnd = PI;
67     }
68     else
69     {
70       betaRangeStart = -PI;
71       betaRangeEnd = 0;
72     }
73   }
74 
75   const Vector3 I_ = EulerAnglesType::AlphaAxisVector();
76   const Vector3 J_ = EulerAnglesType::BetaAxisVector();
77   const Vector3 K_ = EulerAnglesType::GammaAxisVector();
78 
79   // Is approx checks
80   VERIFY(e.isApprox(e));
81   VERIFY_IS_APPROX(e, e);
82   VERIFY_IS_NOT_APPROX(e, EulerAnglesType(e.alpha() + ONE, e.beta() + ONE, e.gamma() + ONE));
83 
84   const Matrix3 m(e);
85   VERIFY_IS_APPROX(Scalar(m.determinant()), ONE);
86 
87   EulerAnglesType ebis(m);
88 
89   // When no roll(acting like polar representation), we have the best precision.
90   // One of those cases is when the Euler angles are on the pole, and because it's singular case,
91   //  the computation returns no roll.
92   if (ebis.beta() == 0)
93     precision = test_precision<Scalar>();
94 
95   // Check that eabis in range
96   VERIFY_APPROXED_RANGE(-PI, ebis.alpha(), PI);
97   VERIFY_APPROXED_RANGE(betaRangeStart, ebis.beta(), betaRangeEnd);
98   VERIFY_APPROXED_RANGE(-PI, ebis.gamma(), PI);
99 
100   const Matrix3 mbis(AngleAxisType(ebis.alpha(), I_) * AngleAxisType(ebis.beta(), J_) * AngleAxisType(ebis.gamma(), K_));
101   VERIFY_IS_APPROX(Scalar(mbis.determinant()), ONE);
102   VERIFY_IS_APPROX(mbis, ebis.toRotationMatrix());
103   /*std::cout << "===================\n" <<
104     "e: " << e << std::endl <<
105     "eabis: " << eabis.transpose() << std::endl <<
106     "m: " << m << std::endl <<
107     "mbis: " << mbis << std::endl <<
108     "X: " << (m * Vector3::UnitX()).transpose() << std::endl <<
109     "X: " << (mbis * Vector3::UnitX()).transpose() << std::endl;*/
110   VERIFY(m.isApprox(mbis, precision));
111 
112   // Test if ea and eabis are the same
113   // Need to check both singular and non-singular cases
114   // There are two singular cases.
115   // 1. When I==K and sin(ea(1)) == 0
116   // 2. When I!=K and cos(ea(1)) == 0
117 
118   // TODO: Make this test work well, and use range saturation function.
119   /*// If I==K, and ea[1]==0, then there no unique solution.
120   // The remark apply in the case where I!=K, and |ea[1]| is close to +-pi/2.
121   if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
122       VERIFY_IS_APPROX(ea, eabis);*/
123 
124   // Quaternions
125   const QuaternionType q(e);
126   ebis = q;
127   const QuaternionType qbis(ebis);
128   VERIFY(internal::isApprox<Scalar>(std::abs(q.dot(qbis)), ONE, precision));
129   //VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
130 
131   // A suggestion for simple product test when will be supported.
132   /*EulerAnglesType e2(PI/2, PI/2, PI/2);
133   Matrix3 m2(e2);
134   VERIFY_IS_APPROX(e*e2, m*m2);*/
135 }
136 
137 template<signed char A, signed char B, signed char C, typename Scalar>
verify_euler_vec(const Matrix<Scalar,3,1> & ea)138 void verify_euler_vec(const Matrix<Scalar,3,1>& ea)
139 {
140   verify_euler(EulerAngles<Scalar, EulerSystem<A, B, C> >(ea[0], ea[1], ea[2]));
141 }
142 
143 template<signed char A, signed char B, signed char C, typename Scalar>
verify_euler_all_neg(const Matrix<Scalar,3,1> & ea)144 void verify_euler_all_neg(const Matrix<Scalar,3,1>& ea)
145 {
146   verify_euler_vec<+A,+B,+C>(ea);
147   verify_euler_vec<+A,+B,-C>(ea);
148   verify_euler_vec<+A,-B,+C>(ea);
149   verify_euler_vec<+A,-B,-C>(ea);
150 
151   verify_euler_vec<-A,+B,+C>(ea);
152   verify_euler_vec<-A,+B,-C>(ea);
153   verify_euler_vec<-A,-B,+C>(ea);
154   verify_euler_vec<-A,-B,-C>(ea);
155 }
156 
check_all_var(const Matrix<Scalar,3,1> & ea)157 template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
158 {
159   verify_euler_all_neg<X,Y,Z>(ea);
160   verify_euler_all_neg<X,Y,X>(ea);
161   verify_euler_all_neg<X,Z,Y>(ea);
162   verify_euler_all_neg<X,Z,X>(ea);
163 
164   verify_euler_all_neg<Y,Z,X>(ea);
165   verify_euler_all_neg<Y,Z,Y>(ea);
166   verify_euler_all_neg<Y,X,Z>(ea);
167   verify_euler_all_neg<Y,X,Y>(ea);
168 
169   verify_euler_all_neg<Z,X,Y>(ea);
170   verify_euler_all_neg<Z,X,Z>(ea);
171   verify_euler_all_neg<Z,Y,X>(ea);
172   verify_euler_all_neg<Z,Y,Z>(ea);
173 }
174 
check_singular_cases(const Scalar & singularBeta)175 template<typename Scalar> void check_singular_cases(const Scalar& singularBeta)
176 {
177   typedef Matrix<Scalar,3,1> Vector3;
178   const Scalar PI = Scalar(EIGEN_PI);
179 
180   for (Scalar epsilon = NumTraits<Scalar>::epsilon(); epsilon < 1; epsilon *= Scalar(1.2))
181   {
182     check_all_var(Vector3(PI/4, singularBeta, PI/3));
183     check_all_var(Vector3(PI/4, singularBeta - epsilon, PI/3));
184     check_all_var(Vector3(PI/4, singularBeta - Scalar(1.5)*epsilon, PI/3));
185     check_all_var(Vector3(PI/4, singularBeta - 2*epsilon, PI/3));
186     check_all_var(Vector3(PI*Scalar(0.8), singularBeta - epsilon, Scalar(0.9)*PI));
187     check_all_var(Vector3(PI*Scalar(-0.9), singularBeta + epsilon, PI*Scalar(0.3)));
188     check_all_var(Vector3(PI*Scalar(-0.6), singularBeta + Scalar(1.5)*epsilon, PI*Scalar(0.3)));
189     check_all_var(Vector3(PI*Scalar(-0.5), singularBeta + 2*epsilon, PI*Scalar(0.4)));
190     check_all_var(Vector3(PI*Scalar(0.9), singularBeta + epsilon, Scalar(0.8)*PI));
191   }
192 
193   // This one for sanity, it had a problem with near pole cases in float scalar.
194   check_all_var(Vector3(PI*Scalar(0.8), singularBeta - Scalar(1E-6), Scalar(0.9)*PI));
195 }
196 
eulerangles_manual()197 template<typename Scalar> void eulerangles_manual()
198 {
199   typedef Matrix<Scalar,3,1> Vector3;
200   typedef Matrix<Scalar,Dynamic,1> VectorX;
201   const Vector3 Zero = Vector3::Zero();
202   const Scalar PI = Scalar(EIGEN_PI);
203 
204   check_all_var(Zero);
205 
206   // singular cases
207   check_singular_cases(PI/2);
208   check_singular_cases(-PI/2);
209 
210   check_singular_cases(Scalar(0));
211   check_singular_cases(Scalar(-0));
212 
213   check_singular_cases(PI);
214   check_singular_cases(-PI);
215 
216   // non-singular cases
217   VectorX alpha = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
218   VectorX beta =  VectorX::LinSpaced(20, Scalar(-0.49) * PI, Scalar(0.49) * PI);
219   VectorX gamma = VectorX::LinSpaced(20, Scalar(-0.99) * PI, PI);
220   for (int i = 0; i < alpha.size(); ++i) {
221     for (int j = 0; j < beta.size(); ++j) {
222       for (int k = 0; k < gamma.size(); ++k) {
223         check_all_var(Vector3(alpha(i), beta(j), gamma(k)));
224       }
225     }
226   }
227 }
228 
eulerangles_rand()229 template<typename Scalar> void eulerangles_rand()
230 {
231   typedef Matrix<Scalar,3,3> Matrix3;
232   typedef Matrix<Scalar,3,1> Vector3;
233   typedef Array<Scalar,3,1> Array3;
234   typedef Quaternion<Scalar> Quaternionx;
235   typedef AngleAxis<Scalar> AngleAxisType;
236 
237   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
238   Quaternionx q1;
239   q1 = AngleAxisType(a, Vector3::Random().normalized());
240   Matrix3 m;
241   m = q1;
242 
243   Vector3 ea = m.eulerAngles(0,1,2);
244   check_all_var(ea);
245   ea = m.eulerAngles(0,1,0);
246   check_all_var(ea);
247 
248   // Check with purely random Quaternion:
249   q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
250   m = q1;
251   ea = m.eulerAngles(0,1,2);
252   check_all_var(ea);
253   ea = m.eulerAngles(0,1,0);
254   check_all_var(ea);
255 
256   // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
257   ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
258   check_all_var(ea);
259 
260   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
261   check_all_var(ea);
262 
263   ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
264   check_all_var(ea);
265 
266   ea[1] = 0;
267   check_all_var(ea);
268 
269   ea.head(2).setZero();
270   check_all_var(ea);
271 
272   ea.setZero();
273   check_all_var(ea);
274 }
275 
EIGEN_DECLARE_TEST(EulerAngles)276 EIGEN_DECLARE_TEST(EulerAngles)
277 {
278   // Simple cast test
279   EulerAnglesXYZd onesEd(1, 1, 1);
280   EulerAnglesXYZf onesEf = onesEd.cast<float>();
281   VERIFY_IS_APPROX(onesEd, onesEf.cast<double>());
282 
283   // Simple Construction from Vector3 test
284   VERIFY_IS_APPROX(onesEd, EulerAnglesXYZd(Vector3d::Ones()));
285 
286   CALL_SUBTEST_1( eulerangles_manual<float>() );
287   CALL_SUBTEST_2( eulerangles_manual<double>() );
288 
289   for(int i = 0; i < g_repeat; i++) {
290     CALL_SUBTEST_3( eulerangles_rand<float>() );
291     CALL_SUBTEST_4( eulerangles_rand<double>() );
292   }
293 
294   // TODO: Add tests for auto diff
295   // TODO: Add tests for complex numbers
296 }
297