1*bf2c3715SXin Li// This file is part of Eigen, a lightweight C++ template library 2*bf2c3715SXin Li// for linear algebra. 3*bf2c3715SXin Li// 4*bf2c3715SXin Li// Copyright (C) 2009 Mark Borgerding mark a borgerding net 5*bf2c3715SXin Li// 6*bf2c3715SXin Li// This Source Code Form is subject to the terms of the Mozilla 7*bf2c3715SXin Li// Public License v. 2.0. If a copy of the MPL was not distributed 8*bf2c3715SXin Li// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9*bf2c3715SXin Li 10*bf2c3715SXin Li#ifndef EIGEN_FFT_H 11*bf2c3715SXin Li#define EIGEN_FFT_H 12*bf2c3715SXin Li 13*bf2c3715SXin Li#include <complex> 14*bf2c3715SXin Li#include <vector> 15*bf2c3715SXin Li#include <map> 16*bf2c3715SXin Li#include "../../Eigen/Core" 17*bf2c3715SXin Li 18*bf2c3715SXin Li 19*bf2c3715SXin Li/** 20*bf2c3715SXin Li * \defgroup FFT_Module Fast Fourier Transform module 21*bf2c3715SXin Li * 22*bf2c3715SXin Li * \code 23*bf2c3715SXin Li * #include <unsupported/Eigen/FFT> 24*bf2c3715SXin Li * \endcode 25*bf2c3715SXin Li * 26*bf2c3715SXin Li * This module provides Fast Fourier transformation, with a configurable backend 27*bf2c3715SXin Li * implementation. 28*bf2c3715SXin Li * 29*bf2c3715SXin Li * The default implementation is based on kissfft. It is a small, free, and 30*bf2c3715SXin Li * reasonably efficient default. 31*bf2c3715SXin Li * 32*bf2c3715SXin Li * There are currently two implementation backend: 33*bf2c3715SXin Li * 34*bf2c3715SXin Li * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size. 35*bf2c3715SXin Li * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form. 36*bf2c3715SXin Li * 37*bf2c3715SXin Li * \section FFTDesign Design 38*bf2c3715SXin Li * 39*bf2c3715SXin Li * The following design decisions were made concerning scaling and 40*bf2c3715SXin Li * half-spectrum for real FFT. 41*bf2c3715SXin Li * 42*bf2c3715SXin Li * The intent is to facilitate generic programming and ease migrating code 43*bf2c3715SXin Li * from Matlab/octave. 44*bf2c3715SXin Li * We think the default behavior of Eigen/FFT should favor correctness and 45*bf2c3715SXin Li * generality over speed. Of course, the caller should be able to "opt-out" from this 46*bf2c3715SXin Li * behavior and get the speed increase if they want it. 47*bf2c3715SXin Li * 48*bf2c3715SXin Li * 1) %Scaling: 49*bf2c3715SXin Li * Other libraries (FFTW,IMKL,KISSFFT) do not perform scaling, so there 50*bf2c3715SXin Li * is a constant gain incurred after the forward&inverse transforms , so 51*bf2c3715SXin Li * IFFT(FFT(x)) = Kx; this is done to avoid a vector-by-value multiply. 52*bf2c3715SXin Li * The downside is that algorithms that worked correctly in Matlab/octave 53*bf2c3715SXin Li * don't behave the same way once implemented in C++. 54*bf2c3715SXin Li * 55*bf2c3715SXin Li * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. 56*bf2c3715SXin Li * 57*bf2c3715SXin Li * 2) Real FFT half-spectrum 58*bf2c3715SXin Li * Other libraries use only half the frequency spectrum (plus one extra 59*bf2c3715SXin Li * sample for the Nyquist bin) for a real FFT, the other half is the 60*bf2c3715SXin Li * conjugate-symmetric of the first half. This saves them a copy and some 61*bf2c3715SXin Li * memory. The downside is the caller needs to have special logic for the 62*bf2c3715SXin Li * number of bins in complex vs real. 63*bf2c3715SXin Li * 64*bf2c3715SXin Li * How Eigen/FFT differs: The full spectrum is returned from the forward 65*bf2c3715SXin Li * transform. This facilitates generic template programming by obviating 66*bf2c3715SXin Li * separate specializations for real vs complex. On the inverse 67*bf2c3715SXin Li * transform, only half the spectrum is actually used if the output type is real. 68*bf2c3715SXin Li */ 69*bf2c3715SXin Li 70*bf2c3715SXin Li 71*bf2c3715SXin Li#include "../../Eigen/src/Core/util/DisableStupidWarnings.h" 72*bf2c3715SXin Li 73*bf2c3715SXin Li#ifdef EIGEN_FFTW_DEFAULT 74*bf2c3715SXin Li// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size 75*bf2c3715SXin Li# include <fftw3.h> 76*bf2c3715SXin Li# include "src/FFT/ei_fftw_impl.h" 77*bf2c3715SXin Li namespace Eigen { 78*bf2c3715SXin Li //template <typename T> typedef struct internal::fftw_impl default_fft_impl; this does not work 79*bf2c3715SXin Li template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {}; 80*bf2c3715SXin Li } 81*bf2c3715SXin Li#elif defined EIGEN_MKL_DEFAULT 82*bf2c3715SXin Li// TODO 83*bf2c3715SXin Li// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form 84*bf2c3715SXin Li# include "src/FFT/ei_imklfft_impl.h" 85*bf2c3715SXin Li namespace Eigen { 86*bf2c3715SXin Li template <typename T> struct default_fft_impl : public internal::imklfft_impl {}; 87*bf2c3715SXin Li } 88*bf2c3715SXin Li#else 89*bf2c3715SXin Li// internal::kissfft_impl: small, free, reasonably efficient default, derived from kissfft 90*bf2c3715SXin Li// 91*bf2c3715SXin Li# include "src/FFT/ei_kissfft_impl.h" 92*bf2c3715SXin Li namespace Eigen { 93*bf2c3715SXin Li template <typename T> 94*bf2c3715SXin Li struct default_fft_impl : public internal::kissfft_impl<T> {}; 95*bf2c3715SXin Li } 96*bf2c3715SXin Li#endif 97*bf2c3715SXin Li 98*bf2c3715SXin Linamespace Eigen { 99*bf2c3715SXin Li 100*bf2c3715SXin Li 101*bf2c3715SXin Li// 102*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy; 103*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy; 104*bf2c3715SXin Li 105*bf2c3715SXin Linamespace internal { 106*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 107*bf2c3715SXin Listruct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> > 108*bf2c3715SXin Li{ 109*bf2c3715SXin Li typedef typename T_SrcMat::PlainObject ReturnType; 110*bf2c3715SXin Li}; 111*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 112*bf2c3715SXin Listruct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> > 113*bf2c3715SXin Li{ 114*bf2c3715SXin Li typedef typename T_SrcMat::PlainObject ReturnType; 115*bf2c3715SXin Li}; 116*bf2c3715SXin Li} 117*bf2c3715SXin Li 118*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 119*bf2c3715SXin Listruct fft_fwd_proxy 120*bf2c3715SXin Li : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> > 121*bf2c3715SXin Li{ 122*bf2c3715SXin Li typedef DenseIndex Index; 123*bf2c3715SXin Li 124*bf2c3715SXin Li fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} 125*bf2c3715SXin Li 126*bf2c3715SXin Li template<typename T_DestMat> void evalTo(T_DestMat& dst) const; 127*bf2c3715SXin Li 128*bf2c3715SXin Li Index rows() const { return m_src.rows(); } 129*bf2c3715SXin Li Index cols() const { return m_src.cols(); } 130*bf2c3715SXin Liprotected: 131*bf2c3715SXin Li const T_SrcMat & m_src; 132*bf2c3715SXin Li T_FftIfc & m_ifc; 133*bf2c3715SXin Li Index m_nfft; 134*bf2c3715SXin Li}; 135*bf2c3715SXin Li 136*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 137*bf2c3715SXin Listruct fft_inv_proxy 138*bf2c3715SXin Li : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> > 139*bf2c3715SXin Li{ 140*bf2c3715SXin Li typedef DenseIndex Index; 141*bf2c3715SXin Li 142*bf2c3715SXin Li fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {} 143*bf2c3715SXin Li 144*bf2c3715SXin Li template<typename T_DestMat> void evalTo(T_DestMat& dst) const; 145*bf2c3715SXin Li 146*bf2c3715SXin Li Index rows() const { return m_src.rows(); } 147*bf2c3715SXin Li Index cols() const { return m_src.cols(); } 148*bf2c3715SXin Liprotected: 149*bf2c3715SXin Li const T_SrcMat & m_src; 150*bf2c3715SXin Li T_FftIfc & m_ifc; 151*bf2c3715SXin Li Index m_nfft; 152*bf2c3715SXin Li}; 153*bf2c3715SXin Li 154*bf2c3715SXin Li 155*bf2c3715SXin Litemplate <typename T_Scalar, 156*bf2c3715SXin Li typename T_Impl=default_fft_impl<T_Scalar> > 157*bf2c3715SXin Liclass FFT 158*bf2c3715SXin Li{ 159*bf2c3715SXin Li public: 160*bf2c3715SXin Li typedef T_Impl impl_type; 161*bf2c3715SXin Li typedef DenseIndex Index; 162*bf2c3715SXin Li typedef typename impl_type::Scalar Scalar; 163*bf2c3715SXin Li typedef typename impl_type::Complex Complex; 164*bf2c3715SXin Li 165*bf2c3715SXin Li enum Flag { 166*bf2c3715SXin Li Default=0, // goof proof 167*bf2c3715SXin Li Unscaled=1, 168*bf2c3715SXin Li HalfSpectrum=2, 169*bf2c3715SXin Li // SomeOtherSpeedOptimization=4 170*bf2c3715SXin Li Speedy=32767 171*bf2c3715SXin Li }; 172*bf2c3715SXin Li 173*bf2c3715SXin Li FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { } 174*bf2c3715SXin Li 175*bf2c3715SXin Li inline 176*bf2c3715SXin Li bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;} 177*bf2c3715SXin Li 178*bf2c3715SXin Li inline 179*bf2c3715SXin Li void SetFlag(Flag f) { m_flag |= (int)f;} 180*bf2c3715SXin Li 181*bf2c3715SXin Li inline 182*bf2c3715SXin Li void ClearFlag(Flag f) { m_flag &= (~(int)f);} 183*bf2c3715SXin Li 184*bf2c3715SXin Li inline 185*bf2c3715SXin Li void fwd( Complex * dst, const Scalar * src, Index nfft) 186*bf2c3715SXin Li { 187*bf2c3715SXin Li m_impl.fwd(dst,src,static_cast<int>(nfft)); 188*bf2c3715SXin Li if ( HasFlag(HalfSpectrum) == false) 189*bf2c3715SXin Li ReflectSpectrum(dst,nfft); 190*bf2c3715SXin Li } 191*bf2c3715SXin Li 192*bf2c3715SXin Li inline 193*bf2c3715SXin Li void fwd( Complex * dst, const Complex * src, Index nfft) 194*bf2c3715SXin Li { 195*bf2c3715SXin Li m_impl.fwd(dst,src,static_cast<int>(nfft)); 196*bf2c3715SXin Li } 197*bf2c3715SXin Li 198*bf2c3715SXin Li /* 199*bf2c3715SXin Li inline 200*bf2c3715SXin Li void fwd2(Complex * dst, const Complex * src, int n0,int n1) 201*bf2c3715SXin Li { 202*bf2c3715SXin Li m_impl.fwd2(dst,src,n0,n1); 203*bf2c3715SXin Li } 204*bf2c3715SXin Li */ 205*bf2c3715SXin Li 206*bf2c3715SXin Li template <typename _Input> 207*bf2c3715SXin Li inline 208*bf2c3715SXin Li void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) 209*bf2c3715SXin Li { 210*bf2c3715SXin Li if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) ) 211*bf2c3715SXin Li dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin 212*bf2c3715SXin Li else 213*bf2c3715SXin Li dst.resize(src.size()); 214*bf2c3715SXin Li fwd(&dst[0],&src[0],src.size()); 215*bf2c3715SXin Li } 216*bf2c3715SXin Li 217*bf2c3715SXin Li template<typename InputDerived, typename ComplexDerived> 218*bf2c3715SXin Li inline 219*bf2c3715SXin Li void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1) 220*bf2c3715SXin Li { 221*bf2c3715SXin Li typedef typename ComplexDerived::Scalar dst_type; 222*bf2c3715SXin Li typedef typename InputDerived::Scalar src_type; 223*bf2c3715SXin Li EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived) 224*bf2c3715SXin Li EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) 225*bf2c3715SXin Li EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time 226*bf2c3715SXin Li EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value), 227*bf2c3715SXin Li YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 228*bf2c3715SXin Li EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, 229*bf2c3715SXin Li THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) 230*bf2c3715SXin Li 231*bf2c3715SXin Li if (nfft<1) 232*bf2c3715SXin Li nfft = src.size(); 233*bf2c3715SXin Li 234*bf2c3715SXin Li if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) ) 235*bf2c3715SXin Li dst.derived().resize( (nfft>>1)+1); 236*bf2c3715SXin Li else 237*bf2c3715SXin Li dst.derived().resize(nfft); 238*bf2c3715SXin Li 239*bf2c3715SXin Li if ( src.innerStride() != 1 || src.size() < nfft ) { 240*bf2c3715SXin Li Matrix<src_type,1,Dynamic> tmp; 241*bf2c3715SXin Li if (src.size()<nfft) { 242*bf2c3715SXin Li tmp.setZero(nfft); 243*bf2c3715SXin Li tmp.block(0,0,src.size(),1 ) = src; 244*bf2c3715SXin Li }else{ 245*bf2c3715SXin Li tmp = src; 246*bf2c3715SXin Li } 247*bf2c3715SXin Li fwd( &dst[0],&tmp[0],nfft ); 248*bf2c3715SXin Li }else{ 249*bf2c3715SXin Li fwd( &dst[0],&src[0],nfft ); 250*bf2c3715SXin Li } 251*bf2c3715SXin Li } 252*bf2c3715SXin Li 253*bf2c3715SXin Li template<typename InputDerived> 254*bf2c3715SXin Li inline 255*bf2c3715SXin Li fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > 256*bf2c3715SXin Li fwd( const MatrixBase<InputDerived> & src, Index nfft=-1) 257*bf2c3715SXin Li { 258*bf2c3715SXin Li return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); 259*bf2c3715SXin Li } 260*bf2c3715SXin Li 261*bf2c3715SXin Li template<typename InputDerived> 262*bf2c3715SXin Li inline 263*bf2c3715SXin Li fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> > 264*bf2c3715SXin Li inv( const MatrixBase<InputDerived> & src, Index nfft=-1) 265*bf2c3715SXin Li { 266*bf2c3715SXin Li return fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft ); 267*bf2c3715SXin Li } 268*bf2c3715SXin Li 269*bf2c3715SXin Li inline 270*bf2c3715SXin Li void inv( Complex * dst, const Complex * src, Index nfft) 271*bf2c3715SXin Li { 272*bf2c3715SXin Li m_impl.inv( dst,src,static_cast<int>(nfft) ); 273*bf2c3715SXin Li if ( HasFlag( Unscaled ) == false) 274*bf2c3715SXin Li scale(dst,Scalar(1./nfft),nfft); // scale the time series 275*bf2c3715SXin Li } 276*bf2c3715SXin Li 277*bf2c3715SXin Li inline 278*bf2c3715SXin Li void inv( Scalar * dst, const Complex * src, Index nfft) 279*bf2c3715SXin Li { 280*bf2c3715SXin Li m_impl.inv( dst,src,static_cast<int>(nfft) ); 281*bf2c3715SXin Li if ( HasFlag( Unscaled ) == false) 282*bf2c3715SXin Li scale(dst,Scalar(1./nfft),nfft); // scale the time series 283*bf2c3715SXin Li } 284*bf2c3715SXin Li 285*bf2c3715SXin Li template<typename OutputDerived, typename ComplexDerived> 286*bf2c3715SXin Li inline 287*bf2c3715SXin Li void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1) 288*bf2c3715SXin Li { 289*bf2c3715SXin Li typedef typename ComplexDerived::Scalar src_type; 290*bf2c3715SXin Li typedef typename ComplexDerived::RealScalar real_type; 291*bf2c3715SXin Li typedef typename OutputDerived::Scalar dst_type; 292*bf2c3715SXin Li const bool realfft= (NumTraits<dst_type>::IsComplex == 0); 293*bf2c3715SXin Li EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived) 294*bf2c3715SXin Li EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived) 295*bf2c3715SXin Li EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time 296*bf2c3715SXin Li EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value), 297*bf2c3715SXin Li YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) 298*bf2c3715SXin Li EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit, 299*bf2c3715SXin Li THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES) 300*bf2c3715SXin Li 301*bf2c3715SXin Li if (nfft<1) { //automatic FFT size determination 302*bf2c3715SXin Li if ( realfft && HasFlag(HalfSpectrum) ) 303*bf2c3715SXin Li nfft = 2*(src.size()-1); //assume even fft size 304*bf2c3715SXin Li else 305*bf2c3715SXin Li nfft = src.size(); 306*bf2c3715SXin Li } 307*bf2c3715SXin Li dst.derived().resize( nfft ); 308*bf2c3715SXin Li 309*bf2c3715SXin Li // check for nfft that does not fit the input data size 310*bf2c3715SXin Li Index resize_input= ( realfft && HasFlag(HalfSpectrum) ) 311*bf2c3715SXin Li ? ( (nfft/2+1) - src.size() ) 312*bf2c3715SXin Li : ( nfft - src.size() ); 313*bf2c3715SXin Li 314*bf2c3715SXin Li if ( src.innerStride() != 1 || resize_input ) { 315*bf2c3715SXin Li // if the vector is strided, then we need to copy it to a packed temporary 316*bf2c3715SXin Li Matrix<src_type,1,Dynamic> tmp; 317*bf2c3715SXin Li if ( resize_input ) { 318*bf2c3715SXin Li size_t ncopy = (std::min)(src.size(),src.size() + resize_input); 319*bf2c3715SXin Li tmp.setZero(src.size() + resize_input); 320*bf2c3715SXin Li if ( realfft && HasFlag(HalfSpectrum) ) { 321*bf2c3715SXin Li // pad at the Nyquist bin 322*bf2c3715SXin Li tmp.head(ncopy) = src.head(ncopy); 323*bf2c3715SXin Li tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin 324*bf2c3715SXin Li }else{ 325*bf2c3715SXin Li size_t nhead,ntail; 326*bf2c3715SXin Li nhead = 1+ncopy/2-1; // range [0:pi) 327*bf2c3715SXin Li ntail = ncopy/2-1; // range (-pi:0) 328*bf2c3715SXin Li tmp.head(nhead) = src.head(nhead); 329*bf2c3715SXin Li tmp.tail(ntail) = src.tail(ntail); 330*bf2c3715SXin Li if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it 331*bf2c3715SXin Li tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*real_type(.5); 332*bf2c3715SXin Li }else{ // expanding -- split the old Nyquist bin into two halves 333*bf2c3715SXin Li tmp(nhead) = src(nhead) * real_type(.5); 334*bf2c3715SXin Li tmp(tmp.size()-nhead) = tmp(nhead); 335*bf2c3715SXin Li } 336*bf2c3715SXin Li } 337*bf2c3715SXin Li }else{ 338*bf2c3715SXin Li tmp = src; 339*bf2c3715SXin Li } 340*bf2c3715SXin Li inv( &dst[0],&tmp[0], nfft); 341*bf2c3715SXin Li }else{ 342*bf2c3715SXin Li inv( &dst[0],&src[0], nfft); 343*bf2c3715SXin Li } 344*bf2c3715SXin Li } 345*bf2c3715SXin Li 346*bf2c3715SXin Li template <typename _Output> 347*bf2c3715SXin Li inline 348*bf2c3715SXin Li void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1) 349*bf2c3715SXin Li { 350*bf2c3715SXin Li if (nfft<1) 351*bf2c3715SXin Li nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size(); 352*bf2c3715SXin Li dst.resize( nfft ); 353*bf2c3715SXin Li inv( &dst[0],&src[0],nfft); 354*bf2c3715SXin Li } 355*bf2c3715SXin Li 356*bf2c3715SXin Li 357*bf2c3715SXin Li /* 358*bf2c3715SXin Li // TODO: multi-dimensional FFTs 359*bf2c3715SXin Li inline 360*bf2c3715SXin Li void inv2(Complex * dst, const Complex * src, int n0,int n1) 361*bf2c3715SXin Li { 362*bf2c3715SXin Li m_impl.inv2(dst,src,n0,n1); 363*bf2c3715SXin Li if ( HasFlag( Unscaled ) == false) 364*bf2c3715SXin Li scale(dst,1./(n0*n1),n0*n1); 365*bf2c3715SXin Li } 366*bf2c3715SXin Li */ 367*bf2c3715SXin Li 368*bf2c3715SXin Li inline 369*bf2c3715SXin Li impl_type & impl() {return m_impl;} 370*bf2c3715SXin Li private: 371*bf2c3715SXin Li 372*bf2c3715SXin Li template <typename T_Data> 373*bf2c3715SXin Li inline 374*bf2c3715SXin Li void scale(T_Data * x,Scalar s,Index nx) 375*bf2c3715SXin Li { 376*bf2c3715SXin Li#if 1 377*bf2c3715SXin Li for (int k=0;k<nx;++k) 378*bf2c3715SXin Li *x++ *= s; 379*bf2c3715SXin Li#else 380*bf2c3715SXin Li if ( ((ptrdiff_t)x) & 15 ) 381*bf2c3715SXin Li Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s; 382*bf2c3715SXin Li else 383*bf2c3715SXin Li Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s; 384*bf2c3715SXin Li //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s; 385*bf2c3715SXin Li#endif 386*bf2c3715SXin Li } 387*bf2c3715SXin Li 388*bf2c3715SXin Li inline 389*bf2c3715SXin Li void ReflectSpectrum(Complex * freq, Index nfft) 390*bf2c3715SXin Li { 391*bf2c3715SXin Li // create the implicit right-half spectrum (conjugate-mirror of the left-half) 392*bf2c3715SXin Li Index nhbins=(nfft>>1)+1; 393*bf2c3715SXin Li for (Index k=nhbins;k < nfft; ++k ) 394*bf2c3715SXin Li freq[k] = conj(freq[nfft-k]); 395*bf2c3715SXin Li } 396*bf2c3715SXin Li 397*bf2c3715SXin Li impl_type m_impl; 398*bf2c3715SXin Li int m_flag; 399*bf2c3715SXin Li}; 400*bf2c3715SXin Li 401*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 402*bf2c3715SXin Litemplate<typename T_DestMat> inline 403*bf2c3715SXin Livoid fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const 404*bf2c3715SXin Li{ 405*bf2c3715SXin Li m_ifc.fwd( dst, m_src, m_nfft); 406*bf2c3715SXin Li} 407*bf2c3715SXin Li 408*bf2c3715SXin Litemplate<typename T_SrcMat,typename T_FftIfc> 409*bf2c3715SXin Litemplate<typename T_DestMat> inline 410*bf2c3715SXin Livoid fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const 411*bf2c3715SXin Li{ 412*bf2c3715SXin Li m_ifc.inv( dst, m_src, m_nfft); 413*bf2c3715SXin Li} 414*bf2c3715SXin Li 415*bf2c3715SXin Li} 416*bf2c3715SXin Li 417*bf2c3715SXin Li#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h" 418*bf2c3715SXin Li 419*bf2c3715SXin Li#endif 420