1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009-2014 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li
copy(const T & x)12*bf2c3715SXin Li template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
13*bf2c3715SXin Li {
14*bf2c3715SXin Li return x;
15*bf2c3715SXin Li }
16*bf2c3715SXin Li
stable_norm(const MatrixType & m)17*bf2c3715SXin Li template<typename MatrixType> void stable_norm(const MatrixType& m)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li /* this test covers the following files:
20*bf2c3715SXin Li StableNorm.h
21*bf2c3715SXin Li */
22*bf2c3715SXin Li using std::sqrt;
23*bf2c3715SXin Li using std::abs;
24*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
25*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar;
26*bf2c3715SXin Li
27*bf2c3715SXin Li bool complex_real_product_ok = true;
28*bf2c3715SXin Li
29*bf2c3715SXin Li // Check the basic machine-dependent constants.
30*bf2c3715SXin Li {
31*bf2c3715SXin Li int ibeta, it, iemin, iemax;
32*bf2c3715SXin Li
33*bf2c3715SXin Li ibeta = std::numeric_limits<RealScalar>::radix; // base for floating-point numbers
34*bf2c3715SXin Li it = std::numeric_limits<RealScalar>::digits; // number of base-beta digits in mantissa
35*bf2c3715SXin Li iemin = std::numeric_limits<RealScalar>::min_exponent; // minimum exponent
36*bf2c3715SXin Li iemax = std::numeric_limits<RealScalar>::max_exponent; // maximum exponent
37*bf2c3715SXin Li
38*bf2c3715SXin Li VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
39*bf2c3715SXin Li && "the stable norm algorithm cannot be guaranteed on this computer");
40*bf2c3715SXin Li
41*bf2c3715SXin Li Scalar inf = std::numeric_limits<RealScalar>::infinity();
42*bf2c3715SXin Li if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) )
43*bf2c3715SXin Li {
44*bf2c3715SXin Li complex_real_product_ok = false;
45*bf2c3715SXin Li static bool first = true;
46*bf2c3715SXin Li if(first)
47*bf2c3715SXin Li std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl;
48*bf2c3715SXin Li first = false;
49*bf2c3715SXin Li }
50*bf2c3715SXin Li }
51*bf2c3715SXin Li
52*bf2c3715SXin Li
53*bf2c3715SXin Li Index rows = m.rows();
54*bf2c3715SXin Li Index cols = m.cols();
55*bf2c3715SXin Li
56*bf2c3715SXin Li // get a non-zero random factor
57*bf2c3715SXin Li Scalar factor = internal::random<Scalar>();
58*bf2c3715SXin Li while(numext::abs2(factor)<RealScalar(1e-4))
59*bf2c3715SXin Li factor = internal::random<Scalar>();
60*bf2c3715SXin Li Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
61*bf2c3715SXin Li
62*bf2c3715SXin Li factor = internal::random<Scalar>();
63*bf2c3715SXin Li while(numext::abs2(factor)<RealScalar(1e-4))
64*bf2c3715SXin Li factor = internal::random<Scalar>();
65*bf2c3715SXin Li Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
66*bf2c3715SXin Li
67*bf2c3715SXin Li Scalar one(1);
68*bf2c3715SXin Li
69*bf2c3715SXin Li MatrixType vzero = MatrixType::Zero(rows, cols),
70*bf2c3715SXin Li vrand = MatrixType::Random(rows, cols),
71*bf2c3715SXin Li vbig(rows, cols),
72*bf2c3715SXin Li vsmall(rows,cols);
73*bf2c3715SXin Li
74*bf2c3715SXin Li vbig.fill(big);
75*bf2c3715SXin Li vsmall.fill(small);
76*bf2c3715SXin Li
77*bf2c3715SXin Li VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
78*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.stableNorm(), vrand.norm());
79*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.blueNorm(), vrand.norm());
80*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.hypotNorm(), vrand.norm());
81*bf2c3715SXin Li
82*bf2c3715SXin Li // test with expressions as input
83*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand).stableNorm(), vrand.norm());
84*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand).blueNorm(), vrand.norm());
85*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand).hypotNorm(), vrand.norm());
86*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).stableNorm(), vrand.norm());
87*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).blueNorm(), vrand.norm());
88*bf2c3715SXin Li VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).hypotNorm(), vrand.norm());
89*bf2c3715SXin Li
90*bf2c3715SXin Li RealScalar size = static_cast<RealScalar>(m.size());
91*bf2c3715SXin Li
92*bf2c3715SXin Li // test numext::isfinite
93*bf2c3715SXin Li VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity()));
94*bf2c3715SXin Li VERIFY(!(numext::isfinite)(sqrt(-abs(big))));
95*bf2c3715SXin Li
96*bf2c3715SXin Li // test overflow
97*bf2c3715SXin Li VERIFY((numext::isfinite)(sqrt(size)*abs(big)));
98*bf2c3715SXin Li VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
99*bf2c3715SXin Li VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
100*bf2c3715SXin Li VERIFY_IS_APPROX(vbig.blueNorm(), sqrt(size)*abs(big));
101*bf2c3715SXin Li VERIFY_IS_APPROX(vbig.hypotNorm(), sqrt(size)*abs(big));
102*bf2c3715SXin Li
103*bf2c3715SXin Li // test underflow
104*bf2c3715SXin Li VERIFY((numext::isfinite)(sqrt(size)*abs(small)));
105*bf2c3715SXin Li VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())), abs(sqrt(size)*small)); // here the default norm must fail
106*bf2c3715SXin Li VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
107*bf2c3715SXin Li VERIFY_IS_APPROX(vsmall.blueNorm(), sqrt(size)*abs(small));
108*bf2c3715SXin Li VERIFY_IS_APPROX(vsmall.hypotNorm(), sqrt(size)*abs(small));
109*bf2c3715SXin Li
110*bf2c3715SXin Li // Test compilation of cwise() version
111*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.colwise().stableNorm(), vrand.colwise().norm());
112*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.colwise().blueNorm(), vrand.colwise().norm());
113*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.colwise().hypotNorm(), vrand.colwise().norm());
114*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.rowwise().stableNorm(), vrand.rowwise().norm());
115*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.rowwise().blueNorm(), vrand.rowwise().norm());
116*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(), vrand.rowwise().norm());
117*bf2c3715SXin Li
118*bf2c3715SXin Li // test NaN, +inf, -inf
119*bf2c3715SXin Li MatrixType v;
120*bf2c3715SXin Li Index i = internal::random<Index>(0,rows-1);
121*bf2c3715SXin Li Index j = internal::random<Index>(0,cols-1);
122*bf2c3715SXin Li
123*bf2c3715SXin Li // NaN
124*bf2c3715SXin Li {
125*bf2c3715SXin Li v = vrand;
126*bf2c3715SXin Li v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN();
127*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
128*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
129*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
130*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
131*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
132*bf2c3715SXin Li }
133*bf2c3715SXin Li
134*bf2c3715SXin Li // +inf
135*bf2c3715SXin Li {
136*bf2c3715SXin Li v = vrand;
137*bf2c3715SXin Li v(i,j) = std::numeric_limits<RealScalar>::infinity();
138*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
139*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
140*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.stableNorm()));
141*bf2c3715SXin Li if(complex_real_product_ok){
142*bf2c3715SXin Li VERIFY(isPlusInf(v.stableNorm()));
143*bf2c3715SXin Li }
144*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
145*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
146*bf2c3715SXin Li }
147*bf2c3715SXin Li
148*bf2c3715SXin Li // -inf
149*bf2c3715SXin Li {
150*bf2c3715SXin Li v = vrand;
151*bf2c3715SXin Li v(i,j) = -std::numeric_limits<RealScalar>::infinity();
152*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY(isPlusInf(v.squaredNorm()));
153*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.norm())); VERIFY(isPlusInf(v.norm()));
154*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.stableNorm()));
155*bf2c3715SXin Li if(complex_real_product_ok) {
156*bf2c3715SXin Li VERIFY(isPlusInf(v.stableNorm()));
157*bf2c3715SXin Li }
158*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY(isPlusInf(v.blueNorm()));
159*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY(isPlusInf(v.hypotNorm()));
160*bf2c3715SXin Li }
161*bf2c3715SXin Li
162*bf2c3715SXin Li // mix
163*bf2c3715SXin Li {
164*bf2c3715SXin Li Index i2 = internal::random<Index>(0,rows-1);
165*bf2c3715SXin Li Index j2 = internal::random<Index>(0,cols-1);
166*bf2c3715SXin Li v = vrand;
167*bf2c3715SXin Li v(i,j) = -std::numeric_limits<RealScalar>::infinity();
168*bf2c3715SXin Li v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
169*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.squaredNorm())); VERIFY((numext::isnan)(v.squaredNorm()));
170*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
171*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
172*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
173*bf2c3715SXin Li if (i2 != i || j2 != j) {
174*bf2c3715SXin Li // hypot propagates inf over NaN.
175*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isinf)(v.hypotNorm()));
176*bf2c3715SXin Li } else {
177*bf2c3715SXin Li // inf is overwritten by NaN, expect norm to be NaN.
178*bf2c3715SXin Li VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
179*bf2c3715SXin Li }
180*bf2c3715SXin Li }
181*bf2c3715SXin Li
182*bf2c3715SXin Li // stableNormalize[d]
183*bf2c3715SXin Li {
184*bf2c3715SXin Li VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized());
185*bf2c3715SXin Li MatrixType vcopy(vrand);
186*bf2c3715SXin Li vcopy.stableNormalize();
187*bf2c3715SXin Li VERIFY_IS_APPROX(vcopy, vrand.normalized());
188*bf2c3715SXin Li VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1));
189*bf2c3715SXin Li VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1));
190*bf2c3715SXin Li VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1));
191*bf2c3715SXin Li VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1));
192*bf2c3715SXin Li RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
193*bf2c3715SXin Li VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling);
194*bf2c3715SXin Li VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized());
195*bf2c3715SXin Li }
196*bf2c3715SXin Li }
197*bf2c3715SXin Li
198*bf2c3715SXin Li template<typename Scalar>
test_hypot()199*bf2c3715SXin Li void test_hypot()
200*bf2c3715SXin Li {
201*bf2c3715SXin Li typedef typename NumTraits<Scalar>::Real RealScalar;
202*bf2c3715SXin Li Scalar factor = internal::random<Scalar>();
203*bf2c3715SXin Li while(numext::abs2(factor)<RealScalar(1e-4))
204*bf2c3715SXin Li factor = internal::random<Scalar>();
205*bf2c3715SXin Li Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
206*bf2c3715SXin Li
207*bf2c3715SXin Li factor = internal::random<Scalar>();
208*bf2c3715SXin Li while(numext::abs2(factor)<RealScalar(1e-4))
209*bf2c3715SXin Li factor = internal::random<Scalar>();
210*bf2c3715SXin Li Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
211*bf2c3715SXin Li
212*bf2c3715SXin Li Scalar one (1),
213*bf2c3715SXin Li zero (0),
214*bf2c3715SXin Li sqrt2 (std::sqrt(2)),
215*bf2c3715SXin Li nan (std::numeric_limits<RealScalar>::quiet_NaN());
216*bf2c3715SXin Li
217*bf2c3715SXin Li Scalar a = internal::random<Scalar>(-1,1);
218*bf2c3715SXin Li Scalar b = internal::random<Scalar>(-1,1);
219*bf2c3715SXin Li VERIFY_IS_APPROX(numext::hypot(a,b),std::sqrt(numext::abs2(a)+numext::abs2(b)));
220*bf2c3715SXin Li VERIFY_IS_EQUAL(numext::hypot(zero,zero), zero);
221*bf2c3715SXin Li VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2);
222*bf2c3715SXin Li VERIFY_IS_APPROX(numext::hypot(big,big), sqrt2*numext::abs(big));
223*bf2c3715SXin Li VERIFY_IS_APPROX(numext::hypot(small,small), sqrt2*numext::abs(small));
224*bf2c3715SXin Li VERIFY_IS_APPROX(numext::hypot(small,big), numext::abs(big));
225*bf2c3715SXin Li VERIFY((numext::isnan)(numext::hypot(nan,a)));
226*bf2c3715SXin Li VERIFY((numext::isnan)(numext::hypot(a,nan)));
227*bf2c3715SXin Li }
228*bf2c3715SXin Li
EIGEN_DECLARE_TEST(stable_norm)229*bf2c3715SXin Li EIGEN_DECLARE_TEST(stable_norm)
230*bf2c3715SXin Li {
231*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
232*bf2c3715SXin Li CALL_SUBTEST_3( test_hypot<double>() );
233*bf2c3715SXin Li CALL_SUBTEST_4( test_hypot<float>() );
234*bf2c3715SXin Li CALL_SUBTEST_5( test_hypot<std::complex<double> >() );
235*bf2c3715SXin Li CALL_SUBTEST_6( test_hypot<std::complex<float> >() );
236*bf2c3715SXin Li
237*bf2c3715SXin Li CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
238*bf2c3715SXin Li CALL_SUBTEST_2( stable_norm(Vector4d()) );
239*bf2c3715SXin Li CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
240*bf2c3715SXin Li CALL_SUBTEST_3( stable_norm(MatrixXd(internal::random<int>(10,200), internal::random<int>(10,200))) );
241*bf2c3715SXin Li CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
242*bf2c3715SXin Li CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
243*bf2c3715SXin Li CALL_SUBTEST_6( stable_norm(VectorXcf(internal::random<int>(10,2000))) );
244*bf2c3715SXin Li }
245*bf2c3715SXin Li }
246