xref: /aosp_15_r20/external/eigen/test/stable_norm.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009-2014 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li 
copy(const T & x)12*bf2c3715SXin Li template<typename T> EIGEN_DONT_INLINE T copy(const T& x)
13*bf2c3715SXin Li {
14*bf2c3715SXin Li   return x;
15*bf2c3715SXin Li }
16*bf2c3715SXin Li 
stable_norm(const MatrixType & m)17*bf2c3715SXin Li template<typename MatrixType> void stable_norm(const MatrixType& m)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li   /* this test covers the following files:
20*bf2c3715SXin Li      StableNorm.h
21*bf2c3715SXin Li   */
22*bf2c3715SXin Li   using std::sqrt;
23*bf2c3715SXin Li   using std::abs;
24*bf2c3715SXin Li   typedef typename MatrixType::Scalar Scalar;
25*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
26*bf2c3715SXin Li 
27*bf2c3715SXin Li   bool complex_real_product_ok = true;
28*bf2c3715SXin Li 
29*bf2c3715SXin Li   // Check the basic machine-dependent constants.
30*bf2c3715SXin Li   {
31*bf2c3715SXin Li     int ibeta, it, iemin, iemax;
32*bf2c3715SXin Li 
33*bf2c3715SXin Li     ibeta = std::numeric_limits<RealScalar>::radix;         // base for floating-point numbers
34*bf2c3715SXin Li     it    = std::numeric_limits<RealScalar>::digits;        // number of base-beta digits in mantissa
35*bf2c3715SXin Li     iemin = std::numeric_limits<RealScalar>::min_exponent;  // minimum exponent
36*bf2c3715SXin Li     iemax = std::numeric_limits<RealScalar>::max_exponent;  // maximum exponent
37*bf2c3715SXin Li 
38*bf2c3715SXin Li     VERIFY( (!(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) || (it<=4 && ibeta <= 3 ) || it<2))
39*bf2c3715SXin Li            && "the stable norm algorithm cannot be guaranteed on this computer");
40*bf2c3715SXin Li 
41*bf2c3715SXin Li     Scalar inf = std::numeric_limits<RealScalar>::infinity();
42*bf2c3715SXin Li     if(NumTraits<Scalar>::IsComplex && (numext::isnan)(inf*RealScalar(1)) )
43*bf2c3715SXin Li     {
44*bf2c3715SXin Li       complex_real_product_ok = false;
45*bf2c3715SXin Li       static bool first = true;
46*bf2c3715SXin Li       if(first)
47*bf2c3715SXin Li         std::cerr << "WARNING: compiler mess up complex*real product, " << inf << " * " << 1.0 << " = " << inf*RealScalar(1) << std::endl;
48*bf2c3715SXin Li       first = false;
49*bf2c3715SXin Li     }
50*bf2c3715SXin Li   }
51*bf2c3715SXin Li 
52*bf2c3715SXin Li 
53*bf2c3715SXin Li   Index rows = m.rows();
54*bf2c3715SXin Li   Index cols = m.cols();
55*bf2c3715SXin Li 
56*bf2c3715SXin Li   // get a non-zero random factor
57*bf2c3715SXin Li   Scalar factor = internal::random<Scalar>();
58*bf2c3715SXin Li   while(numext::abs2(factor)<RealScalar(1e-4))
59*bf2c3715SXin Li     factor = internal::random<Scalar>();
60*bf2c3715SXin Li   Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
61*bf2c3715SXin Li 
62*bf2c3715SXin Li   factor = internal::random<Scalar>();
63*bf2c3715SXin Li   while(numext::abs2(factor)<RealScalar(1e-4))
64*bf2c3715SXin Li     factor = internal::random<Scalar>();
65*bf2c3715SXin Li   Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
66*bf2c3715SXin Li 
67*bf2c3715SXin Li   Scalar one(1);
68*bf2c3715SXin Li 
69*bf2c3715SXin Li   MatrixType  vzero = MatrixType::Zero(rows, cols),
70*bf2c3715SXin Li               vrand = MatrixType::Random(rows, cols),
71*bf2c3715SXin Li               vbig(rows, cols),
72*bf2c3715SXin Li               vsmall(rows,cols);
73*bf2c3715SXin Li 
74*bf2c3715SXin Li   vbig.fill(big);
75*bf2c3715SXin Li   vsmall.fill(small);
76*bf2c3715SXin Li 
77*bf2c3715SXin Li   VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
78*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.stableNorm(),      vrand.norm());
79*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.blueNorm(),        vrand.norm());
80*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.hypotNorm(),       vrand.norm());
81*bf2c3715SXin Li 
82*bf2c3715SXin Li   // test with expressions as input
83*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand).stableNorm(),      vrand.norm());
84*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand).blueNorm(),        vrand.norm());
85*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand).hypotNorm(),       vrand.norm());
86*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).stableNorm(),      vrand.norm());
87*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).blueNorm(),        vrand.norm());
88*bf2c3715SXin Li   VERIFY_IS_APPROX((one*vrand+one*vrand-one*vrand).hypotNorm(),       vrand.norm());
89*bf2c3715SXin Li 
90*bf2c3715SXin Li   RealScalar size = static_cast<RealScalar>(m.size());
91*bf2c3715SXin Li 
92*bf2c3715SXin Li   // test numext::isfinite
93*bf2c3715SXin Li   VERIFY(!(numext::isfinite)( std::numeric_limits<RealScalar>::infinity()));
94*bf2c3715SXin Li   VERIFY(!(numext::isfinite)(sqrt(-abs(big))));
95*bf2c3715SXin Li 
96*bf2c3715SXin Li   // test overflow
97*bf2c3715SXin Li   VERIFY((numext::isfinite)(sqrt(size)*abs(big)));
98*bf2c3715SXin Li   VERIFY_IS_NOT_APPROX(sqrt(copy(vbig.squaredNorm())), abs(sqrt(size)*big)); // here the default norm must fail
99*bf2c3715SXin Li   VERIFY_IS_APPROX(vbig.stableNorm(), sqrt(size)*abs(big));
100*bf2c3715SXin Li   VERIFY_IS_APPROX(vbig.blueNorm(),   sqrt(size)*abs(big));
101*bf2c3715SXin Li   VERIFY_IS_APPROX(vbig.hypotNorm(),  sqrt(size)*abs(big));
102*bf2c3715SXin Li 
103*bf2c3715SXin Li   // test underflow
104*bf2c3715SXin Li   VERIFY((numext::isfinite)(sqrt(size)*abs(small)));
105*bf2c3715SXin Li   VERIFY_IS_NOT_APPROX(sqrt(copy(vsmall.squaredNorm())),   abs(sqrt(size)*small)); // here the default norm must fail
106*bf2c3715SXin Li   VERIFY_IS_APPROX(vsmall.stableNorm(), sqrt(size)*abs(small));
107*bf2c3715SXin Li   VERIFY_IS_APPROX(vsmall.blueNorm(),   sqrt(size)*abs(small));
108*bf2c3715SXin Li   VERIFY_IS_APPROX(vsmall.hypotNorm(),  sqrt(size)*abs(small));
109*bf2c3715SXin Li 
110*bf2c3715SXin Li   // Test compilation of cwise() version
111*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.colwise().stableNorm(),      vrand.colwise().norm());
112*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.colwise().blueNorm(),        vrand.colwise().norm());
113*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.colwise().hypotNorm(),       vrand.colwise().norm());
114*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.rowwise().stableNorm(),      vrand.rowwise().norm());
115*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.rowwise().blueNorm(),        vrand.rowwise().norm());
116*bf2c3715SXin Li   VERIFY_IS_APPROX(vrand.rowwise().hypotNorm(),       vrand.rowwise().norm());
117*bf2c3715SXin Li 
118*bf2c3715SXin Li   // test NaN, +inf, -inf
119*bf2c3715SXin Li   MatrixType v;
120*bf2c3715SXin Li   Index i = internal::random<Index>(0,rows-1);
121*bf2c3715SXin Li   Index j = internal::random<Index>(0,cols-1);
122*bf2c3715SXin Li 
123*bf2c3715SXin Li   // NaN
124*bf2c3715SXin Li   {
125*bf2c3715SXin Li     v = vrand;
126*bf2c3715SXin Li     v(i,j) = std::numeric_limits<RealScalar>::quiet_NaN();
127*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm()));
128*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm()));
129*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm()));
130*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm()));
131*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm()));
132*bf2c3715SXin Li   }
133*bf2c3715SXin Li 
134*bf2c3715SXin Li   // +inf
135*bf2c3715SXin Li   {
136*bf2c3715SXin Li     v = vrand;
137*bf2c3715SXin Li     v(i,j) = std::numeric_limits<RealScalar>::infinity();
138*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm()));
139*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm()));
140*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.stableNorm()));
141*bf2c3715SXin Li     if(complex_real_product_ok){
142*bf2c3715SXin Li       VERIFY(isPlusInf(v.stableNorm()));
143*bf2c3715SXin Li     }
144*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm()));
145*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm()));
146*bf2c3715SXin Li   }
147*bf2c3715SXin Li 
148*bf2c3715SXin Li   // -inf
149*bf2c3715SXin Li   {
150*bf2c3715SXin Li     v = vrand;
151*bf2c3715SXin Li     v(i,j) = -std::numeric_limits<RealScalar>::infinity();
152*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY(isPlusInf(v.squaredNorm()));
153*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY(isPlusInf(v.norm()));
154*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.stableNorm()));
155*bf2c3715SXin Li     if(complex_real_product_ok) {
156*bf2c3715SXin Li       VERIFY(isPlusInf(v.stableNorm()));
157*bf2c3715SXin Li     }
158*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY(isPlusInf(v.blueNorm()));
159*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY(isPlusInf(v.hypotNorm()));
160*bf2c3715SXin Li   }
161*bf2c3715SXin Li 
162*bf2c3715SXin Li   // mix
163*bf2c3715SXin Li   {
164*bf2c3715SXin Li     Index i2 = internal::random<Index>(0,rows-1);
165*bf2c3715SXin Li     Index j2 = internal::random<Index>(0,cols-1);
166*bf2c3715SXin Li     v = vrand;
167*bf2c3715SXin Li     v(i,j) = -std::numeric_limits<RealScalar>::infinity();
168*bf2c3715SXin Li     v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
169*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.squaredNorm()));   VERIFY((numext::isnan)(v.squaredNorm()));
170*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.norm()));          VERIFY((numext::isnan)(v.norm()));
171*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.stableNorm()));    VERIFY((numext::isnan)(v.stableNorm()));
172*bf2c3715SXin Li     VERIFY(!(numext::isfinite)(v.blueNorm()));      VERIFY((numext::isnan)(v.blueNorm()));
173*bf2c3715SXin Li     if (i2 != i || j2 != j) {
174*bf2c3715SXin Li       // hypot propagates inf over NaN.
175*bf2c3715SXin Li       VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isinf)(v.hypotNorm()));
176*bf2c3715SXin Li     } else {
177*bf2c3715SXin Li       // inf is overwritten by NaN, expect norm to be NaN.
178*bf2c3715SXin Li       VERIFY(!(numext::isfinite)(v.hypotNorm()));     VERIFY((numext::isnan)(v.hypotNorm()));
179*bf2c3715SXin Li     }
180*bf2c3715SXin Li   }
181*bf2c3715SXin Li 
182*bf2c3715SXin Li   // stableNormalize[d]
183*bf2c3715SXin Li   {
184*bf2c3715SXin Li     VERIFY_IS_APPROX(vrand.stableNormalized(), vrand.normalized());
185*bf2c3715SXin Li     MatrixType vcopy(vrand);
186*bf2c3715SXin Li     vcopy.stableNormalize();
187*bf2c3715SXin Li     VERIFY_IS_APPROX(vcopy, vrand.normalized());
188*bf2c3715SXin Li     VERIFY_IS_APPROX((vrand.stableNormalized()).norm(), RealScalar(1));
189*bf2c3715SXin Li     VERIFY_IS_APPROX(vcopy.norm(), RealScalar(1));
190*bf2c3715SXin Li     VERIFY_IS_APPROX((vbig.stableNormalized()).norm(), RealScalar(1));
191*bf2c3715SXin Li     VERIFY_IS_APPROX((vsmall.stableNormalized()).norm(), RealScalar(1));
192*bf2c3715SXin Li     RealScalar big_scaling = ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
193*bf2c3715SXin Li     VERIFY_IS_APPROX(vbig/big_scaling, (vbig.stableNorm() * vbig.stableNormalized()).eval()/big_scaling);
194*bf2c3715SXin Li     VERIFY_IS_APPROX(vsmall, vsmall.stableNorm() * vsmall.stableNormalized());
195*bf2c3715SXin Li   }
196*bf2c3715SXin Li }
197*bf2c3715SXin Li 
198*bf2c3715SXin Li template<typename Scalar>
test_hypot()199*bf2c3715SXin Li void test_hypot()
200*bf2c3715SXin Li {
201*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
202*bf2c3715SXin Li   Scalar factor = internal::random<Scalar>();
203*bf2c3715SXin Li   while(numext::abs2(factor)<RealScalar(1e-4))
204*bf2c3715SXin Li     factor = internal::random<Scalar>();
205*bf2c3715SXin Li   Scalar big = factor * ((std::numeric_limits<RealScalar>::max)() * RealScalar(1e-4));
206*bf2c3715SXin Li 
207*bf2c3715SXin Li   factor = internal::random<Scalar>();
208*bf2c3715SXin Li   while(numext::abs2(factor)<RealScalar(1e-4))
209*bf2c3715SXin Li     factor = internal::random<Scalar>();
210*bf2c3715SXin Li   Scalar small = factor * ((std::numeric_limits<RealScalar>::min)() * RealScalar(1e4));
211*bf2c3715SXin Li 
212*bf2c3715SXin Li   Scalar  one   (1),
213*bf2c3715SXin Li           zero  (0),
214*bf2c3715SXin Li           sqrt2 (std::sqrt(2)),
215*bf2c3715SXin Li           nan   (std::numeric_limits<RealScalar>::quiet_NaN());
216*bf2c3715SXin Li 
217*bf2c3715SXin Li   Scalar a = internal::random<Scalar>(-1,1);
218*bf2c3715SXin Li   Scalar b = internal::random<Scalar>(-1,1);
219*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::hypot(a,b),std::sqrt(numext::abs2(a)+numext::abs2(b)));
220*bf2c3715SXin Li   VERIFY_IS_EQUAL(numext::hypot(zero,zero), zero);
221*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::hypot(one, one), sqrt2);
222*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::hypot(big,big), sqrt2*numext::abs(big));
223*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::hypot(small,small), sqrt2*numext::abs(small));
224*bf2c3715SXin Li   VERIFY_IS_APPROX(numext::hypot(small,big), numext::abs(big));
225*bf2c3715SXin Li   VERIFY((numext::isnan)(numext::hypot(nan,a)));
226*bf2c3715SXin Li   VERIFY((numext::isnan)(numext::hypot(a,nan)));
227*bf2c3715SXin Li }
228*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(stable_norm)229*bf2c3715SXin Li EIGEN_DECLARE_TEST(stable_norm)
230*bf2c3715SXin Li {
231*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
232*bf2c3715SXin Li     CALL_SUBTEST_3( test_hypot<double>() );
233*bf2c3715SXin Li     CALL_SUBTEST_4( test_hypot<float>() );
234*bf2c3715SXin Li     CALL_SUBTEST_5( test_hypot<std::complex<double> >() );
235*bf2c3715SXin Li     CALL_SUBTEST_6( test_hypot<std::complex<float> >() );
236*bf2c3715SXin Li 
237*bf2c3715SXin Li     CALL_SUBTEST_1( stable_norm(Matrix<float, 1, 1>()) );
238*bf2c3715SXin Li     CALL_SUBTEST_2( stable_norm(Vector4d()) );
239*bf2c3715SXin Li     CALL_SUBTEST_3( stable_norm(VectorXd(internal::random<int>(10,2000))) );
240*bf2c3715SXin Li     CALL_SUBTEST_3( stable_norm(MatrixXd(internal::random<int>(10,200), internal::random<int>(10,200))) );
241*bf2c3715SXin Li     CALL_SUBTEST_4( stable_norm(VectorXf(internal::random<int>(10,2000))) );
242*bf2c3715SXin Li     CALL_SUBTEST_5( stable_norm(VectorXcd(internal::random<int>(10,2000))) );
243*bf2c3715SXin Li     CALL_SUBTEST_6( stable_norm(VectorXcf(internal::random<int>(10,2000))) );
244*bf2c3715SXin Li   }
245*bf2c3715SXin Li }
246