xref: /aosp_15_r20/external/eigen/test/sparse_basic.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2011 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2008 Daniel Gomez Ferro <[email protected]>
6*bf2c3715SXin Li // Copyright (C) 2013 Désiré Nuentsa-Wakam <[email protected]>
7*bf2c3715SXin Li //
8*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
9*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
10*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11*bf2c3715SXin Li 
12*bf2c3715SXin Li #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
13*bf2c3715SXin Li static long g_realloc_count = 0;
14*bf2c3715SXin Li #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++;
15*bf2c3715SXin Li 
16*bf2c3715SXin Li static long g_dense_op_sparse_count = 0;
17*bf2c3715SXin Li #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++;
18*bf2c3715SXin Li #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10;
19*bf2c3715SXin Li #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20;
20*bf2c3715SXin Li #endif
21*bf2c3715SXin Li 
22*bf2c3715SXin Li #include "sparse.h"
23*bf2c3715SXin Li 
sparse_basic(const SparseMatrixType & ref)24*bf2c3715SXin Li template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
25*bf2c3715SXin Li {
26*bf2c3715SXin Li   typedef typename SparseMatrixType::StorageIndex StorageIndex;
27*bf2c3715SXin Li   typedef Matrix<StorageIndex,2,1> Vector2;
28*bf2c3715SXin Li 
29*bf2c3715SXin Li   const Index rows = ref.rows();
30*bf2c3715SXin Li   const Index cols = ref.cols();
31*bf2c3715SXin Li   //const Index inner = ref.innerSize();
32*bf2c3715SXin Li   //const Index outer = ref.outerSize();
33*bf2c3715SXin Li 
34*bf2c3715SXin Li   typedef typename SparseMatrixType::Scalar Scalar;
35*bf2c3715SXin Li   typedef typename SparseMatrixType::RealScalar RealScalar;
36*bf2c3715SXin Li   enum { Flags = SparseMatrixType::Flags };
37*bf2c3715SXin Li 
38*bf2c3715SXin Li   double density = (std::max)(8./(rows*cols), 0.01);
39*bf2c3715SXin Li   typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
40*bf2c3715SXin Li   typedef Matrix<Scalar,Dynamic,1> DenseVector;
41*bf2c3715SXin Li   Scalar eps = 1e-6;
42*bf2c3715SXin Li 
43*bf2c3715SXin Li   Scalar s1 = internal::random<Scalar>();
44*bf2c3715SXin Li   {
45*bf2c3715SXin Li     SparseMatrixType m(rows, cols);
46*bf2c3715SXin Li     DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
47*bf2c3715SXin Li     DenseVector vec1 = DenseVector::Random(rows);
48*bf2c3715SXin Li 
49*bf2c3715SXin Li     std::vector<Vector2> zeroCoords;
50*bf2c3715SXin Li     std::vector<Vector2> nonzeroCoords;
51*bf2c3715SXin Li     initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
52*bf2c3715SXin Li 
53*bf2c3715SXin Li     // test coeff and coeffRef
54*bf2c3715SXin Li     for (std::size_t i=0; i<zeroCoords.size(); ++i)
55*bf2c3715SXin Li     {
56*bf2c3715SXin Li       VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
57*bf2c3715SXin Li       if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
58*bf2c3715SXin Li         VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 );
59*bf2c3715SXin Li     }
60*bf2c3715SXin Li     VERIFY_IS_APPROX(m, refMat);
61*bf2c3715SXin Li 
62*bf2c3715SXin Li     if(!nonzeroCoords.empty()) {
63*bf2c3715SXin Li       m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
64*bf2c3715SXin Li       refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
65*bf2c3715SXin Li     }
66*bf2c3715SXin Li 
67*bf2c3715SXin Li     VERIFY_IS_APPROX(m, refMat);
68*bf2c3715SXin Li 
69*bf2c3715SXin Li       // test assertion
70*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
71*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
72*bf2c3715SXin Li     }
73*bf2c3715SXin Li 
74*bf2c3715SXin Li     // test insert (inner random)
75*bf2c3715SXin Li     {
76*bf2c3715SXin Li       DenseMatrix m1(rows,cols);
77*bf2c3715SXin Li       m1.setZero();
78*bf2c3715SXin Li       SparseMatrixType m2(rows,cols);
79*bf2c3715SXin Li       bool call_reserve = internal::random<int>()%2;
80*bf2c3715SXin Li       Index nnz = internal::random<int>(1,int(rows)/2);
81*bf2c3715SXin Li       if(call_reserve)
82*bf2c3715SXin Li       {
83*bf2c3715SXin Li         if(internal::random<int>()%2)
84*bf2c3715SXin Li           m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz)));
85*bf2c3715SXin Li         else
86*bf2c3715SXin Li           m2.reserve(m2.outerSize() * nnz);
87*bf2c3715SXin Li       }
88*bf2c3715SXin Li       g_realloc_count = 0;
89*bf2c3715SXin Li       for (Index j=0; j<cols; ++j)
90*bf2c3715SXin Li       {
91*bf2c3715SXin Li         for (Index k=0; k<nnz; ++k)
92*bf2c3715SXin Li         {
93*bf2c3715SXin Li           Index i = internal::random<Index>(0,rows-1);
94*bf2c3715SXin Li           if (m1.coeff(i,j)==Scalar(0))
95*bf2c3715SXin Li             m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
96*bf2c3715SXin Li         }
97*bf2c3715SXin Li       }
98*bf2c3715SXin Li 
99*bf2c3715SXin Li       if(call_reserve && !SparseMatrixType::IsRowMajor)
100*bf2c3715SXin Li       {
101*bf2c3715SXin Li         VERIFY(g_realloc_count==0);
102*bf2c3715SXin Li       }
103*bf2c3715SXin Li 
104*bf2c3715SXin Li       m2.finalize();
105*bf2c3715SXin Li       VERIFY_IS_APPROX(m2,m1);
106*bf2c3715SXin Li     }
107*bf2c3715SXin Li 
108*bf2c3715SXin Li     // test insert (fully random)
109*bf2c3715SXin Li     {
110*bf2c3715SXin Li       DenseMatrix m1(rows,cols);
111*bf2c3715SXin Li       m1.setZero();
112*bf2c3715SXin Li       SparseMatrixType m2(rows,cols);
113*bf2c3715SXin Li       if(internal::random<int>()%2)
114*bf2c3715SXin Li         m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
115*bf2c3715SXin Li       for (int k=0; k<rows*cols; ++k)
116*bf2c3715SXin Li       {
117*bf2c3715SXin Li         Index i = internal::random<Index>(0,rows-1);
118*bf2c3715SXin Li         Index j = internal::random<Index>(0,cols-1);
119*bf2c3715SXin Li         if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
120*bf2c3715SXin Li           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
121*bf2c3715SXin Li         else
122*bf2c3715SXin Li         {
123*bf2c3715SXin Li           Scalar v = internal::random<Scalar>();
124*bf2c3715SXin Li           m2.coeffRef(i,j) += v;
125*bf2c3715SXin Li           m1(i,j) += v;
126*bf2c3715SXin Li         }
127*bf2c3715SXin Li       }
128*bf2c3715SXin Li       VERIFY_IS_APPROX(m2,m1);
129*bf2c3715SXin Li     }
130*bf2c3715SXin Li 
131*bf2c3715SXin Li     // test insert (un-compressed)
132*bf2c3715SXin Li     for(int mode=0;mode<4;++mode)
133*bf2c3715SXin Li     {
134*bf2c3715SXin Li       DenseMatrix m1(rows,cols);
135*bf2c3715SXin Li       m1.setZero();
136*bf2c3715SXin Li       SparseMatrixType m2(rows,cols);
137*bf2c3715SXin Li       VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8)));
138*bf2c3715SXin Li       m2.reserve(r);
139*bf2c3715SXin Li       for (Index k=0; k<rows*cols; ++k)
140*bf2c3715SXin Li       {
141*bf2c3715SXin Li         Index i = internal::random<Index>(0,rows-1);
142*bf2c3715SXin Li         Index j = internal::random<Index>(0,cols-1);
143*bf2c3715SXin Li         if (m1.coeff(i,j)==Scalar(0))
144*bf2c3715SXin Li           m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
145*bf2c3715SXin Li         if(mode==3)
146*bf2c3715SXin Li           m2.reserve(r);
147*bf2c3715SXin Li       }
148*bf2c3715SXin Li       if(internal::random<int>()%2)
149*bf2c3715SXin Li         m2.makeCompressed();
150*bf2c3715SXin Li       VERIFY_IS_APPROX(m2,m1);
151*bf2c3715SXin Li     }
152*bf2c3715SXin Li 
153*bf2c3715SXin Li   // test basic computations
154*bf2c3715SXin Li   {
155*bf2c3715SXin Li     DenseMatrix refM1 = DenseMatrix::Zero(rows, cols);
156*bf2c3715SXin Li     DenseMatrix refM2 = DenseMatrix::Zero(rows, cols);
157*bf2c3715SXin Li     DenseMatrix refM3 = DenseMatrix::Zero(rows, cols);
158*bf2c3715SXin Li     DenseMatrix refM4 = DenseMatrix::Zero(rows, cols);
159*bf2c3715SXin Li     SparseMatrixType m1(rows, cols);
160*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
161*bf2c3715SXin Li     SparseMatrixType m3(rows, cols);
162*bf2c3715SXin Li     SparseMatrixType m4(rows, cols);
163*bf2c3715SXin Li     initSparse<Scalar>(density, refM1, m1);
164*bf2c3715SXin Li     initSparse<Scalar>(density, refM2, m2);
165*bf2c3715SXin Li     initSparse<Scalar>(density, refM3, m3);
166*bf2c3715SXin Li     initSparse<Scalar>(density, refM4, m4);
167*bf2c3715SXin Li 
168*bf2c3715SXin Li     if(internal::random<bool>())
169*bf2c3715SXin Li       m1.makeCompressed();
170*bf2c3715SXin Li 
171*bf2c3715SXin Li     Index m1_nnz = m1.nonZeros();
172*bf2c3715SXin Li 
173*bf2c3715SXin Li     VERIFY_IS_APPROX(m1*s1, refM1*s1);
174*bf2c3715SXin Li     VERIFY_IS_APPROX(m1+m2, refM1+refM2);
175*bf2c3715SXin Li     VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
176*bf2c3715SXin Li     VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
177*bf2c3715SXin Li     VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
178*bf2c3715SXin Li     VERIFY_IS_APPROX(m4=m1/s1, refM1/s1);
179*bf2c3715SXin Li     VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz);
180*bf2c3715SXin Li 
181*bf2c3715SXin Li     if(SparseMatrixType::IsRowMajor)
182*bf2c3715SXin Li       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0)));
183*bf2c3715SXin Li     else
184*bf2c3715SXin Li       VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0)));
185*bf2c3715SXin Li 
186*bf2c3715SXin Li     DenseVector rv = DenseVector::Random(m1.cols());
187*bf2c3715SXin Li     DenseVector cv = DenseVector::Random(m1.rows());
188*bf2c3715SXin Li     Index r = internal::random<Index>(0,m1.rows()-2);
189*bf2c3715SXin Li     Index c = internal::random<Index>(0,m1.cols()-1);
190*bf2c3715SXin Li     VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv));
191*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv));
192*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv));
193*bf2c3715SXin Li 
194*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
195*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.real(), refM1.real());
196*bf2c3715SXin Li 
197*bf2c3715SXin Li     refM4.setRandom();
198*bf2c3715SXin Li     // sparse cwise* dense
199*bf2c3715SXin Li     VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
200*bf2c3715SXin Li     // dense cwise* sparse
201*bf2c3715SXin Li     VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3));
202*bf2c3715SXin Li //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
203*bf2c3715SXin Li 
204*bf2c3715SXin Li     // mixed sparse-dense
205*bf2c3715SXin Li     VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3);
206*bf2c3715SXin Li     VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4);
207*bf2c3715SXin Li     VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3);
208*bf2c3715SXin Li     VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4);
209*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
210*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
211*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3));
212*bf2c3715SXin Li 
213*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
214*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3);
215*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
216*bf2c3715SXin Li     VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3));
217*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
218*bf2c3715SXin Li     VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3));
219*bf2c3715SXin Li 
220*bf2c3715SXin Li 
221*bf2c3715SXin Li     VERIFY_IS_APPROX(m1.sum(), refM1.sum());
222*bf2c3715SXin Li 
223*bf2c3715SXin Li     m4 = m1; refM4 = m4;
224*bf2c3715SXin Li 
225*bf2c3715SXin Li     VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
226*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
227*bf2c3715SXin Li     VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
228*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
229*bf2c3715SXin Li 
230*bf2c3715SXin Li     VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
231*bf2c3715SXin Li     VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
232*bf2c3715SXin Li 
233*bf2c3715SXin Li     refM3 = refM1;
234*bf2c3715SXin Li 
235*bf2c3715SXin Li     VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2);
236*bf2c3715SXin Li     VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2);
237*bf2c3715SXin Li 
238*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,10);
239*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
240*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
241*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
242*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
243*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
244*bf2c3715SXin Li 
245*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,20);
246*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
247*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
248*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
249*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
250*bf2c3715SXin Li     g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1);
251*bf2c3715SXin Li     refM3 = m3;
252*bf2c3715SXin Li 
253*bf2c3715SXin Li     if (rows>=2 && cols>=2)
254*bf2c3715SXin Li     {
255*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) );
256*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) );
257*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) );
258*bf2c3715SXin Li       VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) );
259*bf2c3715SXin Li     }
260*bf2c3715SXin Li     m1 = m4; refM1 = refM4;
261*bf2c3715SXin Li 
262*bf2c3715SXin Li     // test aliasing
263*bf2c3715SXin Li     VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
264*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
265*bf2c3715SXin Li     m1 = m4; refM1 = refM4;
266*bf2c3715SXin Li     VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
267*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
268*bf2c3715SXin Li     m1 = m4; refM1 = refM4;
269*bf2c3715SXin Li     VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
270*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
271*bf2c3715SXin Li     m1 = m4; refM1 = refM4;
272*bf2c3715SXin Li     VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
273*bf2c3715SXin Li     VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz);
274*bf2c3715SXin Li     m1 = m4; refM1 = refM4;
275*bf2c3715SXin Li 
276*bf2c3715SXin Li     if(m1.isCompressed())
277*bf2c3715SXin Li     {
278*bf2c3715SXin Li       VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum());
279*bf2c3715SXin Li       m1.coeffs() += s1;
280*bf2c3715SXin Li       for(Index j = 0; j<m1.outerSize(); ++j)
281*bf2c3715SXin Li         for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it)
282*bf2c3715SXin Li           refM1(it.row(), it.col()) += s1;
283*bf2c3715SXin Li       VERIFY_IS_APPROX(m1, refM1);
284*bf2c3715SXin Li     }
285*bf2c3715SXin Li 
286*bf2c3715SXin Li     // and/or
287*bf2c3715SXin Li     {
288*bf2c3715SXin Li       typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool;
289*bf2c3715SXin Li       SpBool mb1 = m1.real().template cast<bool>();
290*bf2c3715SXin Li       SpBool mb2 = m2.real().template cast<bool>();
291*bf2c3715SXin Li       VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count());
292*bf2c3715SXin Li       VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
293*bf2c3715SXin Li       VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count());
294*bf2c3715SXin Li       SpBool mb3 = mb1 && mb2;
295*bf2c3715SXin Li       if(mb1.coeffs().all() && mb2.coeffs().all())
296*bf2c3715SXin Li       {
297*bf2c3715SXin Li         VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count());
298*bf2c3715SXin Li       }
299*bf2c3715SXin Li     }
300*bf2c3715SXin Li   }
301*bf2c3715SXin Li 
302*bf2c3715SXin Li   // test reverse iterators
303*bf2c3715SXin Li   {
304*bf2c3715SXin Li     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
305*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
306*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
307*bf2c3715SXin Li     std::vector<Scalar> ref_value(m2.innerSize());
308*bf2c3715SXin Li     std::vector<Index> ref_index(m2.innerSize());
309*bf2c3715SXin Li     if(internal::random<bool>())
310*bf2c3715SXin Li       m2.makeCompressed();
311*bf2c3715SXin Li     for(Index j = 0; j<m2.outerSize(); ++j)
312*bf2c3715SXin Li     {
313*bf2c3715SXin Li       Index count_forward = 0;
314*bf2c3715SXin Li 
315*bf2c3715SXin Li       for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it)
316*bf2c3715SXin Li       {
317*bf2c3715SXin Li         ref_value[ref_value.size()-1-count_forward] = it.value();
318*bf2c3715SXin Li         ref_index[ref_index.size()-1-count_forward] = it.index();
319*bf2c3715SXin Li         count_forward++;
320*bf2c3715SXin Li       }
321*bf2c3715SXin Li       Index count_reverse = 0;
322*bf2c3715SXin Li       for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it)
323*bf2c3715SXin Li       {
324*bf2c3715SXin Li         VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1);
325*bf2c3715SXin Li         VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index());
326*bf2c3715SXin Li         count_reverse++;
327*bf2c3715SXin Li       }
328*bf2c3715SXin Li       VERIFY_IS_EQUAL(count_forward, count_reverse);
329*bf2c3715SXin Li     }
330*bf2c3715SXin Li   }
331*bf2c3715SXin Li 
332*bf2c3715SXin Li   // test transpose
333*bf2c3715SXin Li   {
334*bf2c3715SXin Li     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
335*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
336*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
337*bf2c3715SXin Li     VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
338*bf2c3715SXin Li     VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
339*bf2c3715SXin Li 
340*bf2c3715SXin Li     VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
341*bf2c3715SXin Li 
342*bf2c3715SXin Li     // check isApprox handles opposite storage order
343*bf2c3715SXin Li     typename Transpose<SparseMatrixType>::PlainObject m3(m2);
344*bf2c3715SXin Li     VERIFY(m2.isApprox(m3));
345*bf2c3715SXin Li   }
346*bf2c3715SXin Li 
347*bf2c3715SXin Li   // test prune
348*bf2c3715SXin Li   {
349*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
350*bf2c3715SXin Li     DenseMatrix refM2(rows, cols);
351*bf2c3715SXin Li     refM2.setZero();
352*bf2c3715SXin Li     int countFalseNonZero = 0;
353*bf2c3715SXin Li     int countTrueNonZero = 0;
354*bf2c3715SXin Li     m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize())));
355*bf2c3715SXin Li     for (Index j=0; j<m2.cols(); ++j)
356*bf2c3715SXin Li     {
357*bf2c3715SXin Li       for (Index i=0; i<m2.rows(); ++i)
358*bf2c3715SXin Li       {
359*bf2c3715SXin Li         float x = internal::random<float>(0,1);
360*bf2c3715SXin Li         if (x<0.1f)
361*bf2c3715SXin Li         {
362*bf2c3715SXin Li           // do nothing
363*bf2c3715SXin Li         }
364*bf2c3715SXin Li         else if (x<0.5f)
365*bf2c3715SXin Li         {
366*bf2c3715SXin Li           countFalseNonZero++;
367*bf2c3715SXin Li           m2.insert(i,j) = Scalar(0);
368*bf2c3715SXin Li         }
369*bf2c3715SXin Li         else
370*bf2c3715SXin Li         {
371*bf2c3715SXin Li           countTrueNonZero++;
372*bf2c3715SXin Li           m2.insert(i,j) = Scalar(1);
373*bf2c3715SXin Li           refM2(i,j) = Scalar(1);
374*bf2c3715SXin Li         }
375*bf2c3715SXin Li       }
376*bf2c3715SXin Li     }
377*bf2c3715SXin Li     if(internal::random<bool>())
378*bf2c3715SXin Li       m2.makeCompressed();
379*bf2c3715SXin Li     VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
380*bf2c3715SXin Li     if(countTrueNonZero>0)
381*bf2c3715SXin Li       VERIFY_IS_APPROX(m2, refM2);
382*bf2c3715SXin Li     m2.prune(Scalar(1));
383*bf2c3715SXin Li     VERIFY(countTrueNonZero==m2.nonZeros());
384*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refM2);
385*bf2c3715SXin Li   }
386*bf2c3715SXin Li 
387*bf2c3715SXin Li   // test setFromTriplets
388*bf2c3715SXin Li   {
389*bf2c3715SXin Li     typedef Triplet<Scalar,StorageIndex> TripletType;
390*bf2c3715SXin Li     std::vector<TripletType> triplets;
391*bf2c3715SXin Li     Index ntriplets = rows*cols;
392*bf2c3715SXin Li     triplets.reserve(ntriplets);
393*bf2c3715SXin Li     DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols);
394*bf2c3715SXin Li     DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols);
395*bf2c3715SXin Li     DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols);
396*bf2c3715SXin Li 
397*bf2c3715SXin Li     for(Index i=0;i<ntriplets;++i)
398*bf2c3715SXin Li     {
399*bf2c3715SXin Li       StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1));
400*bf2c3715SXin Li       StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1));
401*bf2c3715SXin Li       Scalar v = internal::random<Scalar>();
402*bf2c3715SXin Li       triplets.push_back(TripletType(r,c,v));
403*bf2c3715SXin Li       refMat_sum(r,c) += v;
404*bf2c3715SXin Li       if(std::abs(refMat_prod(r,c))==0)
405*bf2c3715SXin Li         refMat_prod(r,c) = v;
406*bf2c3715SXin Li       else
407*bf2c3715SXin Li         refMat_prod(r,c) *= v;
408*bf2c3715SXin Li       refMat_last(r,c) = v;
409*bf2c3715SXin Li     }
410*bf2c3715SXin Li     SparseMatrixType m(rows,cols);
411*bf2c3715SXin Li     m.setFromTriplets(triplets.begin(), triplets.end());
412*bf2c3715SXin Li     VERIFY_IS_APPROX(m, refMat_sum);
413*bf2c3715SXin Li 
414*bf2c3715SXin Li     m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>());
415*bf2c3715SXin Li     VERIFY_IS_APPROX(m, refMat_prod);
416*bf2c3715SXin Li #if (EIGEN_COMP_CXXVER >= 11)
417*bf2c3715SXin Li     m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; });
418*bf2c3715SXin Li     VERIFY_IS_APPROX(m, refMat_last);
419*bf2c3715SXin Li #endif
420*bf2c3715SXin Li   }
421*bf2c3715SXin Li 
422*bf2c3715SXin Li   // test Map
423*bf2c3715SXin Li   {
424*bf2c3715SXin Li     DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
425*bf2c3715SXin Li     SparseMatrixType m2(rows, cols), m3(rows, cols);
426*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
427*bf2c3715SXin Li     initSparse<Scalar>(density, refMat3, m3);
428*bf2c3715SXin Li     {
429*bf2c3715SXin Li       Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
430*bf2c3715SXin Li       Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
431*bf2c3715SXin Li       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
432*bf2c3715SXin Li       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
433*bf2c3715SXin Li     }
434*bf2c3715SXin Li     {
435*bf2c3715SXin Li       MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr());
436*bf2c3715SXin Li       MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr());
437*bf2c3715SXin Li       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
438*bf2c3715SXin Li       VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3);
439*bf2c3715SXin Li     }
440*bf2c3715SXin Li 
441*bf2c3715SXin Li     Index i = internal::random<Index>(0,rows-1);
442*bf2c3715SXin Li     Index j = internal::random<Index>(0,cols-1);
443*bf2c3715SXin Li     m2.coeffRef(i,j) = 123;
444*bf2c3715SXin Li     if(internal::random<bool>())
445*bf2c3715SXin Li       m2.makeCompressed();
446*bf2c3715SXin Li     Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(),  m2.innerNonZeroPtr());
447*bf2c3715SXin Li     VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123));
448*bf2c3715SXin Li     VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123));
449*bf2c3715SXin Li     mapMat2.coeffRef(i,j) = -123;
450*bf2c3715SXin Li     VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123));
451*bf2c3715SXin Li   }
452*bf2c3715SXin Li 
453*bf2c3715SXin Li   // test triangularView
454*bf2c3715SXin Li   {
455*bf2c3715SXin Li     DenseMatrix refMat2(rows, cols), refMat3(rows, cols);
456*bf2c3715SXin Li     SparseMatrixType m2(rows, cols), m3(rows, cols);
457*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
458*bf2c3715SXin Li     refMat3 = refMat2.template triangularView<Lower>();
459*bf2c3715SXin Li     m3 = m2.template triangularView<Lower>();
460*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
461*bf2c3715SXin Li 
462*bf2c3715SXin Li     refMat3 = refMat2.template triangularView<Upper>();
463*bf2c3715SXin Li     m3 = m2.template triangularView<Upper>();
464*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
465*bf2c3715SXin Li 
466*bf2c3715SXin Li     {
467*bf2c3715SXin Li       refMat3 = refMat2.template triangularView<UnitUpper>();
468*bf2c3715SXin Li       m3 = m2.template triangularView<UnitUpper>();
469*bf2c3715SXin Li       VERIFY_IS_APPROX(m3, refMat3);
470*bf2c3715SXin Li 
471*bf2c3715SXin Li       refMat3 = refMat2.template triangularView<UnitLower>();
472*bf2c3715SXin Li       m3 = m2.template triangularView<UnitLower>();
473*bf2c3715SXin Li       VERIFY_IS_APPROX(m3, refMat3);
474*bf2c3715SXin Li     }
475*bf2c3715SXin Li 
476*bf2c3715SXin Li     refMat3 = refMat2.template triangularView<StrictlyUpper>();
477*bf2c3715SXin Li     m3 = m2.template triangularView<StrictlyUpper>();
478*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
479*bf2c3715SXin Li 
480*bf2c3715SXin Li     refMat3 = refMat2.template triangularView<StrictlyLower>();
481*bf2c3715SXin Li     m3 = m2.template triangularView<StrictlyLower>();
482*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
483*bf2c3715SXin Li 
484*bf2c3715SXin Li     // check sparse-triangular to dense
485*bf2c3715SXin Li     refMat3 = m2.template triangularView<StrictlyUpper>();
486*bf2c3715SXin Li     VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>()));
487*bf2c3715SXin Li   }
488*bf2c3715SXin Li 
489*bf2c3715SXin Li   // test selfadjointView
490*bf2c3715SXin Li   if(!SparseMatrixType::IsRowMajor)
491*bf2c3715SXin Li   {
492*bf2c3715SXin Li     DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
493*bf2c3715SXin Li     SparseMatrixType m2(rows, rows), m3(rows, rows);
494*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
495*bf2c3715SXin Li     refMat3 = refMat2.template selfadjointView<Lower>();
496*bf2c3715SXin Li     m3 = m2.template selfadjointView<Lower>();
497*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
498*bf2c3715SXin Li 
499*bf2c3715SXin Li     refMat3 += refMat2.template selfadjointView<Lower>();
500*bf2c3715SXin Li     m3 += m2.template selfadjointView<Lower>();
501*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
502*bf2c3715SXin Li 
503*bf2c3715SXin Li     refMat3 -= refMat2.template selfadjointView<Lower>();
504*bf2c3715SXin Li     m3 -= m2.template selfadjointView<Lower>();
505*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat3);
506*bf2c3715SXin Li 
507*bf2c3715SXin Li     // selfadjointView only works for square matrices:
508*bf2c3715SXin Li     SparseMatrixType m4(rows, rows+1);
509*bf2c3715SXin Li     VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>());
510*bf2c3715SXin Li     VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>());
511*bf2c3715SXin Li   }
512*bf2c3715SXin Li 
513*bf2c3715SXin Li   // test sparseView
514*bf2c3715SXin Li   {
515*bf2c3715SXin Li     DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
516*bf2c3715SXin Li     SparseMatrixType m2(rows, rows);
517*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
518*bf2c3715SXin Li     VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
519*bf2c3715SXin Li 
520*bf2c3715SXin Li     // sparse view on expressions:
521*bf2c3715SXin Li     VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval());
522*bf2c3715SXin Li     VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval());
523*bf2c3715SXin Li     VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval());
524*bf2c3715SXin Li     VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval());
525*bf2c3715SXin Li   }
526*bf2c3715SXin Li 
527*bf2c3715SXin Li   // test diagonal
528*bf2c3715SXin Li   {
529*bf2c3715SXin Li     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
530*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
531*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
532*bf2c3715SXin Li     VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
533*bf2c3715SXin Li     DenseVector d = m2.diagonal();
534*bf2c3715SXin Li     VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
535*bf2c3715SXin Li     d = m2.diagonal().array();
536*bf2c3715SXin Li     VERIFY_IS_APPROX(d, refMat2.diagonal().eval());
537*bf2c3715SXin Li     VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval());
538*bf2c3715SXin Li 
539*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag);
540*bf2c3715SXin Li     m2.diagonal()      += refMat2.diagonal();
541*bf2c3715SXin Li     refMat2.diagonal() += refMat2.diagonal();
542*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
543*bf2c3715SXin Li   }
544*bf2c3715SXin Li 
545*bf2c3715SXin Li   // test diagonal to sparse
546*bf2c3715SXin Li   {
547*bf2c3715SXin Li     DenseVector d = DenseVector::Random(rows);
548*bf2c3715SXin Li     DenseMatrix refMat2 = d.asDiagonal();
549*bf2c3715SXin Li     SparseMatrixType m2;
550*bf2c3715SXin Li     m2 = d.asDiagonal();
551*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
552*bf2c3715SXin Li     SparseMatrixType m3(d.asDiagonal());
553*bf2c3715SXin Li     VERIFY_IS_APPROX(m3, refMat2);
554*bf2c3715SXin Li     refMat2 += d.asDiagonal();
555*bf2c3715SXin Li     m2 += d.asDiagonal();
556*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
557*bf2c3715SXin Li     m2.setZero();       m2 += d.asDiagonal();
558*bf2c3715SXin Li     refMat2.setZero();  refMat2 += d.asDiagonal();
559*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
560*bf2c3715SXin Li     m2.setZero();       m2 -= d.asDiagonal();
561*bf2c3715SXin Li     refMat2.setZero();  refMat2 -= d.asDiagonal();
562*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
563*bf2c3715SXin Li 
564*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
565*bf2c3715SXin Li     m2.makeCompressed();
566*bf2c3715SXin Li     m2 += d.asDiagonal();
567*bf2c3715SXin Li     refMat2 += d.asDiagonal();
568*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
569*bf2c3715SXin Li 
570*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
571*bf2c3715SXin Li     m2.makeCompressed();
572*bf2c3715SXin Li     VectorXi res(rows);
573*bf2c3715SXin Li     for(Index i=0; i<rows; ++i)
574*bf2c3715SXin Li       res(i) = internal::random<int>(0,3);
575*bf2c3715SXin Li     m2.reserve(res);
576*bf2c3715SXin Li     m2 -= d.asDiagonal();
577*bf2c3715SXin Li     refMat2 -= d.asDiagonal();
578*bf2c3715SXin Li     VERIFY_IS_APPROX(m2, refMat2);
579*bf2c3715SXin Li   }
580*bf2c3715SXin Li 
581*bf2c3715SXin Li   // test conservative resize
582*bf2c3715SXin Li   {
583*bf2c3715SXin Li       std::vector< std::pair<StorageIndex,StorageIndex> > inc;
584*bf2c3715SXin Li       if(rows > 3 && cols > 2)
585*bf2c3715SXin Li         inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2));
586*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0));
587*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2));
588*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0));
589*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3));
590*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1));
591*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0));
592*bf2c3715SXin Li       inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1));
593*bf2c3715SXin Li 
594*bf2c3715SXin Li       for(size_t i = 0; i< inc.size(); i++) {
595*bf2c3715SXin Li         StorageIndex incRows = inc[i].first;
596*bf2c3715SXin Li         StorageIndex incCols = inc[i].second;
597*bf2c3715SXin Li         SparseMatrixType m1(rows, cols);
598*bf2c3715SXin Li         DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
599*bf2c3715SXin Li         initSparse<Scalar>(density, refMat1, m1);
600*bf2c3715SXin Li 
601*bf2c3715SXin Li         SparseMatrixType m2 = m1;
602*bf2c3715SXin Li         m2.makeCompressed();
603*bf2c3715SXin Li 
604*bf2c3715SXin Li         m1.conservativeResize(rows+incRows, cols+incCols);
605*bf2c3715SXin Li         m2.conservativeResize(rows+incRows, cols+incCols);
606*bf2c3715SXin Li         refMat1.conservativeResize(rows+incRows, cols+incCols);
607*bf2c3715SXin Li         if (incRows > 0) refMat1.bottomRows(incRows).setZero();
608*bf2c3715SXin Li         if (incCols > 0) refMat1.rightCols(incCols).setZero();
609*bf2c3715SXin Li 
610*bf2c3715SXin Li         VERIFY_IS_APPROX(m1, refMat1);
611*bf2c3715SXin Li         VERIFY_IS_APPROX(m2, refMat1);
612*bf2c3715SXin Li 
613*bf2c3715SXin Li         // Insert new values
614*bf2c3715SXin Li         if (incRows > 0)
615*bf2c3715SXin Li           m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
616*bf2c3715SXin Li         if (incCols > 0)
617*bf2c3715SXin Li           m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
618*bf2c3715SXin Li 
619*bf2c3715SXin Li         VERIFY_IS_APPROX(m1, refMat1);
620*bf2c3715SXin Li 
621*bf2c3715SXin Li 
622*bf2c3715SXin Li       }
623*bf2c3715SXin Li   }
624*bf2c3715SXin Li 
625*bf2c3715SXin Li   // test Identity matrix
626*bf2c3715SXin Li   {
627*bf2c3715SXin Li     DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
628*bf2c3715SXin Li     SparseMatrixType m1(rows, rows);
629*bf2c3715SXin Li     m1.setIdentity();
630*bf2c3715SXin Li     VERIFY_IS_APPROX(m1, refMat1);
631*bf2c3715SXin Li     for(int k=0; k<rows*rows/4; ++k)
632*bf2c3715SXin Li     {
633*bf2c3715SXin Li       Index i = internal::random<Index>(0,rows-1);
634*bf2c3715SXin Li       Index j = internal::random<Index>(0,rows-1);
635*bf2c3715SXin Li       Scalar v = internal::random<Scalar>();
636*bf2c3715SXin Li       m1.coeffRef(i,j) = v;
637*bf2c3715SXin Li       refMat1.coeffRef(i,j) = v;
638*bf2c3715SXin Li       VERIFY_IS_APPROX(m1, refMat1);
639*bf2c3715SXin Li       if(internal::random<Index>(0,10)<2)
640*bf2c3715SXin Li         m1.makeCompressed();
641*bf2c3715SXin Li     }
642*bf2c3715SXin Li     m1.setIdentity();
643*bf2c3715SXin Li     refMat1.setIdentity();
644*bf2c3715SXin Li     VERIFY_IS_APPROX(m1, refMat1);
645*bf2c3715SXin Li   }
646*bf2c3715SXin Li 
647*bf2c3715SXin Li   // test array/vector of InnerIterator
648*bf2c3715SXin Li   {
649*bf2c3715SXin Li     typedef typename SparseMatrixType::InnerIterator IteratorType;
650*bf2c3715SXin Li 
651*bf2c3715SXin Li     DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
652*bf2c3715SXin Li     SparseMatrixType m2(rows, cols);
653*bf2c3715SXin Li     initSparse<Scalar>(density, refMat2, m2);
654*bf2c3715SXin Li     IteratorType static_array[2];
655*bf2c3715SXin Li     static_array[0] = IteratorType(m2,0);
656*bf2c3715SXin Li     static_array[1] = IteratorType(m2,m2.outerSize()-1);
657*bf2c3715SXin Li     VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 );
658*bf2c3715SXin Li     VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 );
659*bf2c3715SXin Li     if(static_array[0] && static_array[1])
660*bf2c3715SXin Li     {
661*bf2c3715SXin Li       ++(static_array[1]);
662*bf2c3715SXin Li       static_array[1] = IteratorType(m2,0);
663*bf2c3715SXin Li       VERIFY( static_array[1] );
664*bf2c3715SXin Li       VERIFY( static_array[1].index() == static_array[0].index() );
665*bf2c3715SXin Li       VERIFY( static_array[1].outer() == static_array[0].outer() );
666*bf2c3715SXin Li       VERIFY( static_array[1].value() == static_array[0].value() );
667*bf2c3715SXin Li     }
668*bf2c3715SXin Li 
669*bf2c3715SXin Li     std::vector<IteratorType> iters(2);
670*bf2c3715SXin Li     iters[0] = IteratorType(m2,0);
671*bf2c3715SXin Li     iters[1] = IteratorType(m2,m2.outerSize()-1);
672*bf2c3715SXin Li   }
673*bf2c3715SXin Li 
674*bf2c3715SXin Li   // test reserve with empty rows/columns
675*bf2c3715SXin Li   {
676*bf2c3715SXin Li     SparseMatrixType m1(0,cols);
677*bf2c3715SXin Li     m1.reserve(ArrayXi::Constant(m1.outerSize(),1));
678*bf2c3715SXin Li     SparseMatrixType m2(rows,0);
679*bf2c3715SXin Li     m2.reserve(ArrayXi::Constant(m2.outerSize(),1));
680*bf2c3715SXin Li   }
681*bf2c3715SXin Li }
682*bf2c3715SXin Li 
683*bf2c3715SXin Li 
684*bf2c3715SXin Li template<typename SparseMatrixType>
big_sparse_triplet(Index rows,Index cols,double density)685*bf2c3715SXin Li void big_sparse_triplet(Index rows, Index cols, double density) {
686*bf2c3715SXin Li   typedef typename SparseMatrixType::StorageIndex StorageIndex;
687*bf2c3715SXin Li   typedef typename SparseMatrixType::Scalar Scalar;
688*bf2c3715SXin Li   typedef Triplet<Scalar,Index> TripletType;
689*bf2c3715SXin Li   std::vector<TripletType> triplets;
690*bf2c3715SXin Li   double nelements = density * rows*cols;
691*bf2c3715SXin Li   VERIFY(nelements>=0 && nelements < static_cast<double>(NumTraits<StorageIndex>::highest()));
692*bf2c3715SXin Li   Index ntriplets = Index(nelements);
693*bf2c3715SXin Li   triplets.reserve(ntriplets);
694*bf2c3715SXin Li   Scalar sum = Scalar(0);
695*bf2c3715SXin Li   for(Index i=0;i<ntriplets;++i)
696*bf2c3715SXin Li   {
697*bf2c3715SXin Li     Index r = internal::random<Index>(0,rows-1);
698*bf2c3715SXin Li     Index c = internal::random<Index>(0,cols-1);
699*bf2c3715SXin Li     // use positive values to prevent numerical cancellation errors in sum
700*bf2c3715SXin Li     Scalar v = numext::abs(internal::random<Scalar>());
701*bf2c3715SXin Li     triplets.push_back(TripletType(r,c,v));
702*bf2c3715SXin Li     sum += v;
703*bf2c3715SXin Li   }
704*bf2c3715SXin Li   SparseMatrixType m(rows,cols);
705*bf2c3715SXin Li   m.setFromTriplets(triplets.begin(), triplets.end());
706*bf2c3715SXin Li   VERIFY(m.nonZeros() <= ntriplets);
707*bf2c3715SXin Li   VERIFY_IS_APPROX(sum, m.sum());
708*bf2c3715SXin Li }
709*bf2c3715SXin Li 
710*bf2c3715SXin Li template<int>
bug1105()711*bf2c3715SXin Li void bug1105()
712*bf2c3715SXin Li {
713*bf2c3715SXin Li   // Regression test for bug 1105
714*bf2c3715SXin Li   int n = Eigen::internal::random<int>(200,600);
715*bf2c3715SXin Li   SparseMatrix<std::complex<double>,0, long> mat(n, n);
716*bf2c3715SXin Li   std::complex<double> val;
717*bf2c3715SXin Li 
718*bf2c3715SXin Li   for(int i=0; i<n; ++i)
719*bf2c3715SXin Li   {
720*bf2c3715SXin Li     mat.coeffRef(i, i%(n/10)) = val;
721*bf2c3715SXin Li     VERIFY(mat.data().allocatedSize()<20*n);
722*bf2c3715SXin Li   }
723*bf2c3715SXin Li }
724*bf2c3715SXin Li 
725*bf2c3715SXin Li #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA
726*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(sparse_basic)727*bf2c3715SXin Li EIGEN_DECLARE_TEST(sparse_basic)
728*bf2c3715SXin Li {
729*bf2c3715SXin Li   g_dense_op_sparse_count = 0;  // Suppresses compiler warning.
730*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
731*bf2c3715SXin Li     int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200);
732*bf2c3715SXin Li     if(Eigen::internal::random<int>(0,4) == 0) {
733*bf2c3715SXin Li       r = c; // check square matrices in 25% of tries
734*bf2c3715SXin Li     }
735*bf2c3715SXin Li     EIGEN_UNUSED_VARIABLE(r+c);
736*bf2c3715SXin Li     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) ));
737*bf2c3715SXin Li     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
738*bf2c3715SXin Li     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) ));
739*bf2c3715SXin Li     CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) ));
740*bf2c3715SXin Li     CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) ));
741*bf2c3715SXin Li     CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) ));
742*bf2c3715SXin Li     CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) ));
743*bf2c3715SXin Li 
744*bf2c3715SXin Li     r = Eigen::internal::random<int>(1,100);
745*bf2c3715SXin Li     c = Eigen::internal::random<int>(1,100);
746*bf2c3715SXin Li     if(Eigen::internal::random<int>(0,4) == 0) {
747*bf2c3715SXin Li       r = c; // check square matrices in 25% of tries
748*bf2c3715SXin Li     }
749*bf2c3715SXin Li 
750*bf2c3715SXin Li     CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) ));
751*bf2c3715SXin Li     CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) ));
752*bf2c3715SXin Li   }
753*bf2c3715SXin Li 
754*bf2c3715SXin Li   // Regression test for bug 900: (manually insert higher values here, if you have enough RAM):
755*bf2c3715SXin Li   CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125)));
756*bf2c3715SXin Li   CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125)));
757*bf2c3715SXin Li 
758*bf2c3715SXin Li   CALL_SUBTEST_7( bug1105<0>() );
759*bf2c3715SXin Li }
760*bf2c3715SXin Li #endif
761