1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2010,2012 Jitse Niesen <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <limits>
12*bf2c3715SXin Li #include <Eigen/Eigenvalues>
13*bf2c3715SXin Li
verifyIsQuasiTriangular(const MatrixType & T)14*bf2c3715SXin Li template<typename MatrixType> void verifyIsQuasiTriangular(const MatrixType& T)
15*bf2c3715SXin Li {
16*bf2c3715SXin Li const Index size = T.cols();
17*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
18*bf2c3715SXin Li
19*bf2c3715SXin Li // Check T is lower Hessenberg
20*bf2c3715SXin Li for(int row = 2; row < size; ++row) {
21*bf2c3715SXin Li for(int col = 0; col < row - 1; ++col) {
22*bf2c3715SXin Li VERIFY(T(row,col) == Scalar(0));
23*bf2c3715SXin Li }
24*bf2c3715SXin Li }
25*bf2c3715SXin Li
26*bf2c3715SXin Li // Check that any non-zero on the subdiagonal is followed by a zero and is
27*bf2c3715SXin Li // part of a 2x2 diagonal block with imaginary eigenvalues.
28*bf2c3715SXin Li for(int row = 1; row < size; ++row) {
29*bf2c3715SXin Li if (T(row,row-1) != Scalar(0)) {
30*bf2c3715SXin Li VERIFY(row == size-1 || T(row+1,row) == 0);
31*bf2c3715SXin Li Scalar tr = T(row-1,row-1) + T(row,row);
32*bf2c3715SXin Li Scalar det = T(row-1,row-1) * T(row,row) - T(row-1,row) * T(row,row-1);
33*bf2c3715SXin Li VERIFY(4 * det > tr * tr);
34*bf2c3715SXin Li }
35*bf2c3715SXin Li }
36*bf2c3715SXin Li }
37*bf2c3715SXin Li
schur(int size=MatrixType::ColsAtCompileTime)38*bf2c3715SXin Li template<typename MatrixType> void schur(int size = MatrixType::ColsAtCompileTime)
39*bf2c3715SXin Li {
40*bf2c3715SXin Li // Test basic functionality: T is quasi-triangular and A = U T U*
41*bf2c3715SXin Li for(int counter = 0; counter < g_repeat; ++counter) {
42*bf2c3715SXin Li MatrixType A = MatrixType::Random(size, size);
43*bf2c3715SXin Li RealSchur<MatrixType> schurOfA(A);
44*bf2c3715SXin Li VERIFY_IS_EQUAL(schurOfA.info(), Success);
45*bf2c3715SXin Li MatrixType U = schurOfA.matrixU();
46*bf2c3715SXin Li MatrixType T = schurOfA.matrixT();
47*bf2c3715SXin Li verifyIsQuasiTriangular(T);
48*bf2c3715SXin Li VERIFY_IS_APPROX(A, U * T * U.transpose());
49*bf2c3715SXin Li }
50*bf2c3715SXin Li
51*bf2c3715SXin Li // Test asserts when not initialized
52*bf2c3715SXin Li RealSchur<MatrixType> rsUninitialized;
53*bf2c3715SXin Li VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
54*bf2c3715SXin Li VERIFY_RAISES_ASSERT(rsUninitialized.matrixU());
55*bf2c3715SXin Li VERIFY_RAISES_ASSERT(rsUninitialized.info());
56*bf2c3715SXin Li
57*bf2c3715SXin Li // Test whether compute() and constructor returns same result
58*bf2c3715SXin Li MatrixType A = MatrixType::Random(size, size);
59*bf2c3715SXin Li RealSchur<MatrixType> rs1;
60*bf2c3715SXin Li rs1.compute(A);
61*bf2c3715SXin Li RealSchur<MatrixType> rs2(A);
62*bf2c3715SXin Li VERIFY_IS_EQUAL(rs1.info(), Success);
63*bf2c3715SXin Li VERIFY_IS_EQUAL(rs2.info(), Success);
64*bf2c3715SXin Li VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
65*bf2c3715SXin Li VERIFY_IS_EQUAL(rs1.matrixU(), rs2.matrixU());
66*bf2c3715SXin Li
67*bf2c3715SXin Li // Test maximum number of iterations
68*bf2c3715SXin Li RealSchur<MatrixType> rs3;
69*bf2c3715SXin Li rs3.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * size).compute(A);
70*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.info(), Success);
71*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.matrixT(), rs1.matrixT());
72*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.matrixU(), rs1.matrixU());
73*bf2c3715SXin Li if (size > 2) {
74*bf2c3715SXin Li rs3.setMaxIterations(1).compute(A);
75*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.info(), NoConvergence);
76*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.getMaxIterations(), 1);
77*bf2c3715SXin Li }
78*bf2c3715SXin Li
79*bf2c3715SXin Li MatrixType Atriangular = A;
80*bf2c3715SXin Li Atriangular.template triangularView<StrictlyLower>().setZero();
81*bf2c3715SXin Li rs3.setMaxIterations(1).compute(Atriangular); // triangular matrices do not need any iterations
82*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.info(), Success);
83*bf2c3715SXin Li VERIFY_IS_APPROX(rs3.matrixT(), Atriangular); // approx because of scaling...
84*bf2c3715SXin Li VERIFY_IS_EQUAL(rs3.matrixU(), MatrixType::Identity(size, size));
85*bf2c3715SXin Li
86*bf2c3715SXin Li // Test computation of only T, not U
87*bf2c3715SXin Li RealSchur<MatrixType> rsOnlyT(A, false);
88*bf2c3715SXin Li VERIFY_IS_EQUAL(rsOnlyT.info(), Success);
89*bf2c3715SXin Li VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
90*bf2c3715SXin Li VERIFY_RAISES_ASSERT(rsOnlyT.matrixU());
91*bf2c3715SXin Li
92*bf2c3715SXin Li if (size > 2 && size < 20)
93*bf2c3715SXin Li {
94*bf2c3715SXin Li // Test matrix with NaN
95*bf2c3715SXin Li A(0,0) = std::numeric_limits<typename MatrixType::Scalar>::quiet_NaN();
96*bf2c3715SXin Li RealSchur<MatrixType> rsNaN(A);
97*bf2c3715SXin Li VERIFY_IS_EQUAL(rsNaN.info(), NoConvergence);
98*bf2c3715SXin Li }
99*bf2c3715SXin Li }
100*bf2c3715SXin Li
EIGEN_DECLARE_TEST(schur_real)101*bf2c3715SXin Li EIGEN_DECLARE_TEST(schur_real)
102*bf2c3715SXin Li {
103*bf2c3715SXin Li CALL_SUBTEST_1(( schur<Matrix4f>() ));
104*bf2c3715SXin Li CALL_SUBTEST_2(( schur<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4)) ));
105*bf2c3715SXin Li CALL_SUBTEST_3(( schur<Matrix<float, 1, 1> >() ));
106*bf2c3715SXin Li CALL_SUBTEST_4(( schur<Matrix<double, 3, 3, Eigen::RowMajor> >() ));
107*bf2c3715SXin Li
108*bf2c3715SXin Li // Test problem size constructors
109*bf2c3715SXin Li CALL_SUBTEST_5(RealSchur<MatrixXf>(10));
110*bf2c3715SXin Li }
111