1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2010-2011 Jitse Niesen <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2016 Gael Guennebaud <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li
13*bf2c3715SXin Li template<typename MatrixType>
equalsIdentity(const MatrixType & A)14*bf2c3715SXin Li bool equalsIdentity(const MatrixType& A)
15*bf2c3715SXin Li {
16*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
17*bf2c3715SXin Li Scalar zero = static_cast<Scalar>(0);
18*bf2c3715SXin Li
19*bf2c3715SXin Li bool offDiagOK = true;
20*bf2c3715SXin Li for (Index i = 0; i < A.rows(); ++i) {
21*bf2c3715SXin Li for (Index j = i+1; j < A.cols(); ++j) {
22*bf2c3715SXin Li offDiagOK = offDiagOK && (A(i,j) == zero);
23*bf2c3715SXin Li }
24*bf2c3715SXin Li }
25*bf2c3715SXin Li for (Index i = 0; i < A.rows(); ++i) {
26*bf2c3715SXin Li for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
27*bf2c3715SXin Li offDiagOK = offDiagOK && (A(i,j) == zero);
28*bf2c3715SXin Li }
29*bf2c3715SXin Li }
30*bf2c3715SXin Li
31*bf2c3715SXin Li bool diagOK = (A.diagonal().array() == 1).all();
32*bf2c3715SXin Li return offDiagOK && diagOK;
33*bf2c3715SXin Li
34*bf2c3715SXin Li }
35*bf2c3715SXin Li
36*bf2c3715SXin Li template<typename VectorType>
check_extremity_accuracy(const VectorType & v,const typename VectorType::Scalar & low,const typename VectorType::Scalar & high)37*bf2c3715SXin Li void check_extremity_accuracy(const VectorType &v, const typename VectorType::Scalar &low, const typename VectorType::Scalar &high)
38*bf2c3715SXin Li {
39*bf2c3715SXin Li typedef typename VectorType::Scalar Scalar;
40*bf2c3715SXin Li typedef typename VectorType::RealScalar RealScalar;
41*bf2c3715SXin Li
42*bf2c3715SXin Li RealScalar prec = internal::is_same<RealScalar,float>::value ? NumTraits<RealScalar>::dummy_precision()*10 : NumTraits<RealScalar>::dummy_precision()/10;
43*bf2c3715SXin Li Index size = v.size();
44*bf2c3715SXin Li
45*bf2c3715SXin Li if(size<20)
46*bf2c3715SXin Li return;
47*bf2c3715SXin Li
48*bf2c3715SXin Li for (int i=0; i<size; ++i)
49*bf2c3715SXin Li {
50*bf2c3715SXin Li if(i<5 || i>size-6)
51*bf2c3715SXin Li {
52*bf2c3715SXin Li Scalar ref = (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1);
53*bf2c3715SXin Li if(std::abs(ref)>1)
54*bf2c3715SXin Li {
55*bf2c3715SXin Li if(!internal::isApprox(v(i), ref, prec))
56*bf2c3715SXin Li std::cout << v(i) << " != " << ref << " ; relative error: " << std::abs((v(i)-ref)/ref) << " ; required precision: " << prec << " ; range: " << low << "," << high << " ; i: " << i << "\n";
57*bf2c3715SXin Li VERIFY(internal::isApprox(v(i), (low*RealScalar(size-i-1))/RealScalar(size-1) + (high*RealScalar(i))/RealScalar(size-1), prec));
58*bf2c3715SXin Li }
59*bf2c3715SXin Li }
60*bf2c3715SXin Li }
61*bf2c3715SXin Li }
62*bf2c3715SXin Li
63*bf2c3715SXin Li template<typename VectorType>
testVectorType(const VectorType & base)64*bf2c3715SXin Li void testVectorType(const VectorType& base)
65*bf2c3715SXin Li {
66*bf2c3715SXin Li typedef typename VectorType::Scalar Scalar;
67*bf2c3715SXin Li typedef typename VectorType::RealScalar RealScalar;
68*bf2c3715SXin Li
69*bf2c3715SXin Li const Index size = base.size();
70*bf2c3715SXin Li
71*bf2c3715SXin Li Scalar high = internal::random<Scalar>(-500,500);
72*bf2c3715SXin Li Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
73*bf2c3715SXin Li if (numext::real(low)>numext::real(high)) std::swap(low,high);
74*bf2c3715SXin Li
75*bf2c3715SXin Li // check low==high
76*bf2c3715SXin Li if(internal::random<float>(0.f,1.f)<0.05f)
77*bf2c3715SXin Li low = high;
78*bf2c3715SXin Li // check abs(low) >> abs(high)
79*bf2c3715SXin Li else if(size>2 && std::numeric_limits<RealScalar>::max_exponent10>0 && internal::random<float>(0.f,1.f)<0.1f)
80*bf2c3715SXin Li low = -internal::random<Scalar>(1,2) * RealScalar(std::pow(RealScalar(10),std::numeric_limits<RealScalar>::max_exponent10/2));
81*bf2c3715SXin Li
82*bf2c3715SXin Li const Scalar step = ((size == 1) ? 1 : (high-low)/RealScalar(size-1));
83*bf2c3715SXin Li
84*bf2c3715SXin Li // check whether the result yields what we expect it to do
85*bf2c3715SXin Li VectorType m(base);
86*bf2c3715SXin Li m.setLinSpaced(size,low,high);
87*bf2c3715SXin Li
88*bf2c3715SXin Li if(!NumTraits<Scalar>::IsInteger)
89*bf2c3715SXin Li {
90*bf2c3715SXin Li VectorType n(size);
91*bf2c3715SXin Li for (int i=0; i<size; ++i)
92*bf2c3715SXin Li n(i) = low+RealScalar(i)*step;
93*bf2c3715SXin Li VERIFY_IS_APPROX(m,n);
94*bf2c3715SXin Li
95*bf2c3715SXin Li CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
96*bf2c3715SXin Li }
97*bf2c3715SXin Li
98*bf2c3715SXin Li RealScalar range_length = numext::real(high-low);
99*bf2c3715SXin Li if((!NumTraits<Scalar>::IsInteger) || (range_length>=size && (Index(range_length)%(size-1))==0) || (Index(range_length+1)<size && (size%Index(range_length+1))==0))
100*bf2c3715SXin Li {
101*bf2c3715SXin Li VectorType n(size);
102*bf2c3715SXin Li if((!NumTraits<Scalar>::IsInteger) || (range_length>=size))
103*bf2c3715SXin Li for (int i=0; i<size; ++i)
104*bf2c3715SXin Li n(i) = size==1 ? low : (low + ((high-low)*Scalar(i))/RealScalar(size-1));
105*bf2c3715SXin Li else
106*bf2c3715SXin Li for (int i=0; i<size; ++i)
107*bf2c3715SXin Li n(i) = size==1 ? low : low + Scalar((double(range_length+1)*double(i))/double(size));
108*bf2c3715SXin Li VERIFY_IS_APPROX(m,n);
109*bf2c3715SXin Li
110*bf2c3715SXin Li // random access version
111*bf2c3715SXin Li m = VectorType::LinSpaced(size,low,high);
112*bf2c3715SXin Li VERIFY_IS_APPROX(m,n);
113*bf2c3715SXin Li VERIFY( internal::isApprox(m(m.size()-1),high) );
114*bf2c3715SXin Li VERIFY( size==1 || internal::isApprox(m(0),low) );
115*bf2c3715SXin Li VERIFY_IS_EQUAL(m(m.size()-1) , high);
116*bf2c3715SXin Li if(!NumTraits<Scalar>::IsInteger)
117*bf2c3715SXin Li CALL_SUBTEST( check_extremity_accuracy(m, low, high) );
118*bf2c3715SXin Li }
119*bf2c3715SXin Li
120*bf2c3715SXin Li VERIFY( numext::real(m(m.size()-1)) <= numext::real(high) );
121*bf2c3715SXin Li VERIFY( (m.array().real() <= numext::real(high)).all() );
122*bf2c3715SXin Li VERIFY( (m.array().real() >= numext::real(low)).all() );
123*bf2c3715SXin Li
124*bf2c3715SXin Li
125*bf2c3715SXin Li VERIFY( numext::real(m(m.size()-1)) >= numext::real(low) );
126*bf2c3715SXin Li if(size>=1)
127*bf2c3715SXin Li {
128*bf2c3715SXin Li VERIFY( internal::isApprox(m(0),low) );
129*bf2c3715SXin Li VERIFY_IS_EQUAL(m(0) , low);
130*bf2c3715SXin Li }
131*bf2c3715SXin Li
132*bf2c3715SXin Li // check whether everything works with row and col major vectors
133*bf2c3715SXin Li Matrix<Scalar,Dynamic,1> row_vector(size);
134*bf2c3715SXin Li Matrix<Scalar,1,Dynamic> col_vector(size);
135*bf2c3715SXin Li row_vector.setLinSpaced(size,low,high);
136*bf2c3715SXin Li col_vector.setLinSpaced(size,low,high);
137*bf2c3715SXin Li // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
138*bf2c3715SXin Li // when computing the squared sum in isApprox, thus the 2x factor.
139*bf2c3715SXin Li VERIFY( row_vector.isApprox(col_vector.transpose(), RealScalar(2)*NumTraits<Scalar>::epsilon()));
140*bf2c3715SXin Li
141*bf2c3715SXin Li Matrix<Scalar,Dynamic,1> size_changer(size+50);
142*bf2c3715SXin Li size_changer.setLinSpaced(size,low,high);
143*bf2c3715SXin Li VERIFY( size_changer.size() == size );
144*bf2c3715SXin Li
145*bf2c3715SXin Li typedef Matrix<Scalar,1,1> ScalarMatrix;
146*bf2c3715SXin Li ScalarMatrix scalar;
147*bf2c3715SXin Li scalar.setLinSpaced(1,low,high);
148*bf2c3715SXin Li VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
149*bf2c3715SXin Li VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
150*bf2c3715SXin Li
151*bf2c3715SXin Li // regression test for bug 526 (linear vectorized transversal)
152*bf2c3715SXin Li if (size > 1 && (!NumTraits<Scalar>::IsInteger)) {
153*bf2c3715SXin Li m.tail(size-1).setLinSpaced(low, high);
154*bf2c3715SXin Li VERIFY_IS_APPROX(m(size-1), high);
155*bf2c3715SXin Li }
156*bf2c3715SXin Li
157*bf2c3715SXin Li // regression test for bug 1383 (LinSpaced with empty size/range)
158*bf2c3715SXin Li {
159*bf2c3715SXin Li Index n0 = VectorType::SizeAtCompileTime==Dynamic ? 0 : VectorType::SizeAtCompileTime;
160*bf2c3715SXin Li low = internal::random<Scalar>();
161*bf2c3715SXin Li m = VectorType::LinSpaced(n0,low,low-RealScalar(1));
162*bf2c3715SXin Li VERIFY(m.size()==n0);
163*bf2c3715SXin Li
164*bf2c3715SXin Li if(VectorType::SizeAtCompileTime==Dynamic)
165*bf2c3715SXin Li {
166*bf2c3715SXin Li VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,0,Scalar(n0-1)).sum(),Scalar(0));
167*bf2c3715SXin Li VERIFY_IS_EQUAL(VectorType::LinSpaced(n0,low,low-RealScalar(1)).sum(),Scalar(0));
168*bf2c3715SXin Li }
169*bf2c3715SXin Li
170*bf2c3715SXin Li m.setLinSpaced(n0,0,Scalar(n0-1));
171*bf2c3715SXin Li VERIFY(m.size()==n0);
172*bf2c3715SXin Li m.setLinSpaced(n0,low,low-RealScalar(1));
173*bf2c3715SXin Li VERIFY(m.size()==n0);
174*bf2c3715SXin Li
175*bf2c3715SXin Li // empty range only:
176*bf2c3715SXin Li VERIFY_IS_APPROX(VectorType::LinSpaced(size,low,low),VectorType::Constant(size,low));
177*bf2c3715SXin Li m.setLinSpaced(size,low,low);
178*bf2c3715SXin Li VERIFY_IS_APPROX(m,VectorType::Constant(size,low));
179*bf2c3715SXin Li
180*bf2c3715SXin Li if(NumTraits<Scalar>::IsInteger)
181*bf2c3715SXin Li {
182*bf2c3715SXin Li VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar(size-1)), VectorType::LinSpaced(size,low+Scalar(size-1),low).reverse() );
183*bf2c3715SXin Li
184*bf2c3715SXin Li if(VectorType::SizeAtCompileTime==Dynamic)
185*bf2c3715SXin Li {
186*bf2c3715SXin Li // Check negative multiplicator path:
187*bf2c3715SXin Li for(Index k=1; k<5; ++k)
188*bf2c3715SXin Li VERIFY_IS_APPROX( VectorType::LinSpaced(size,low,low+Scalar((size-1)*k)), VectorType::LinSpaced(size,low+Scalar((size-1)*k),low).reverse() );
189*bf2c3715SXin Li // Check negative divisor path:
190*bf2c3715SXin Li for(Index k=1; k<5; ++k)
191*bf2c3715SXin Li VERIFY_IS_APPROX( VectorType::LinSpaced(size*k,low,low+Scalar(size-1)), VectorType::LinSpaced(size*k,low+Scalar(size-1),low).reverse() );
192*bf2c3715SXin Li }
193*bf2c3715SXin Li }
194*bf2c3715SXin Li }
195*bf2c3715SXin Li
196*bf2c3715SXin Li // test setUnit()
197*bf2c3715SXin Li if(m.size()>0)
198*bf2c3715SXin Li {
199*bf2c3715SXin Li for(Index k=0; k<10; ++k)
200*bf2c3715SXin Li {
201*bf2c3715SXin Li Index i = internal::random<Index>(0,m.size()-1);
202*bf2c3715SXin Li m.setUnit(i);
203*bf2c3715SXin Li VERIFY_IS_APPROX( m, VectorType::Unit(m.size(), i) );
204*bf2c3715SXin Li }
205*bf2c3715SXin Li if(VectorType::SizeAtCompileTime==Dynamic)
206*bf2c3715SXin Li {
207*bf2c3715SXin Li Index i = internal::random<Index>(0,2*m.size()-1);
208*bf2c3715SXin Li m.setUnit(2*m.size(),i);
209*bf2c3715SXin Li VERIFY_IS_APPROX( m, VectorType::Unit(m.size(),i) );
210*bf2c3715SXin Li }
211*bf2c3715SXin Li }
212*bf2c3715SXin Li
213*bf2c3715SXin Li }
214*bf2c3715SXin Li
215*bf2c3715SXin Li template<typename MatrixType>
testMatrixType(const MatrixType & m)216*bf2c3715SXin Li void testMatrixType(const MatrixType& m)
217*bf2c3715SXin Li {
218*bf2c3715SXin Li using std::abs;
219*bf2c3715SXin Li const Index rows = m.rows();
220*bf2c3715SXin Li const Index cols = m.cols();
221*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
222*bf2c3715SXin Li typedef typename MatrixType::RealScalar RealScalar;
223*bf2c3715SXin Li
224*bf2c3715SXin Li Scalar s1;
225*bf2c3715SXin Li do {
226*bf2c3715SXin Li s1 = internal::random<Scalar>();
227*bf2c3715SXin Li } while(abs(s1)<RealScalar(1e-5) && (!NumTraits<Scalar>::IsInteger));
228*bf2c3715SXin Li
229*bf2c3715SXin Li MatrixType A;
230*bf2c3715SXin Li A.setIdentity(rows, cols);
231*bf2c3715SXin Li VERIFY(equalsIdentity(A));
232*bf2c3715SXin Li VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
233*bf2c3715SXin Li
234*bf2c3715SXin Li
235*bf2c3715SXin Li A = MatrixType::Constant(rows,cols,s1);
236*bf2c3715SXin Li Index i = internal::random<Index>(0,rows-1);
237*bf2c3715SXin Li Index j = internal::random<Index>(0,cols-1);
238*bf2c3715SXin Li VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1)(i,j), s1 );
239*bf2c3715SXin Li VERIFY_IS_APPROX( MatrixType::Constant(rows,cols,s1).coeff(i,j), s1 );
240*bf2c3715SXin Li VERIFY_IS_APPROX( A(i,j), s1 );
241*bf2c3715SXin Li }
242*bf2c3715SXin Li
243*bf2c3715SXin Li template<int>
bug79()244*bf2c3715SXin Li void bug79()
245*bf2c3715SXin Li {
246*bf2c3715SXin Li // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
247*bf2c3715SXin Li VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<double>::epsilon() );
248*bf2c3715SXin Li }
249*bf2c3715SXin Li
250*bf2c3715SXin Li template<int>
bug1630()251*bf2c3715SXin Li void bug1630()
252*bf2c3715SXin Li {
253*bf2c3715SXin Li Array4d x4 = Array4d::LinSpaced(0.0, 1.0);
254*bf2c3715SXin Li Array3d x3(Array4d::LinSpaced(0.0, 1.0).head(3));
255*bf2c3715SXin Li VERIFY_IS_APPROX(x4.head(3), x3);
256*bf2c3715SXin Li }
257*bf2c3715SXin Li
258*bf2c3715SXin Li template<int>
nullary_overflow()259*bf2c3715SXin Li void nullary_overflow()
260*bf2c3715SXin Li {
261*bf2c3715SXin Li // Check possible overflow issue
262*bf2c3715SXin Li int n = 60000;
263*bf2c3715SXin Li ArrayXi a1(n), a2(n);
264*bf2c3715SXin Li a1.setLinSpaced(n, 0, n-1);
265*bf2c3715SXin Li for(int i=0; i<n; ++i)
266*bf2c3715SXin Li a2(i) = i;
267*bf2c3715SXin Li VERIFY_IS_APPROX(a1,a2);
268*bf2c3715SXin Li }
269*bf2c3715SXin Li
270*bf2c3715SXin Li template<int>
nullary_internal_logic()271*bf2c3715SXin Li void nullary_internal_logic()
272*bf2c3715SXin Li {
273*bf2c3715SXin Li // check some internal logic
274*bf2c3715SXin Li VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<double> >::value ));
275*bf2c3715SXin Li VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<double> >::value ));
276*bf2c3715SXin Li VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<double> >::value ));
277*bf2c3715SXin Li VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<double> >::ret ));
278*bf2c3715SXin Li
279*bf2c3715SXin Li VERIFY(( !internal::has_nullary_operator<internal::scalar_identity_op<double> >::value ));
280*bf2c3715SXin Li VERIFY(( !internal::has_unary_operator<internal::scalar_identity_op<double> >::value ));
281*bf2c3715SXin Li VERIFY(( internal::has_binary_operator<internal::scalar_identity_op<double> >::value ));
282*bf2c3715SXin Li VERIFY(( !internal::functor_has_linear_access<internal::scalar_identity_op<double> >::ret ));
283*bf2c3715SXin Li
284*bf2c3715SXin Li VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<float> >::value ));
285*bf2c3715SXin Li VERIFY(( internal::has_unary_operator<internal::linspaced_op<float> >::value ));
286*bf2c3715SXin Li VERIFY(( !internal::has_binary_operator<internal::linspaced_op<float> >::value ));
287*bf2c3715SXin Li VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<float> >::ret ));
288*bf2c3715SXin Li
289*bf2c3715SXin Li // Regression unit test for a weird MSVC bug.
290*bf2c3715SXin Li // Search "nullary_wrapper_workaround_msvc" in CoreEvaluators.h for the details.
291*bf2c3715SXin Li // See also traits<Ref>::match.
292*bf2c3715SXin Li {
293*bf2c3715SXin Li MatrixXf A = MatrixXf::Random(3,3);
294*bf2c3715SXin Li Ref<const MatrixXf> R = 2.0*A;
295*bf2c3715SXin Li VERIFY_IS_APPROX(R, A+A);
296*bf2c3715SXin Li
297*bf2c3715SXin Li Ref<const MatrixXf> R1 = MatrixXf::Random(3,3)+A;
298*bf2c3715SXin Li
299*bf2c3715SXin Li VectorXi V = VectorXi::Random(3);
300*bf2c3715SXin Li Ref<const VectorXi> R2 = VectorXi::LinSpaced(3,1,3)+V;
301*bf2c3715SXin Li VERIFY_IS_APPROX(R2, V+Vector3i(1,2,3));
302*bf2c3715SXin Li
303*bf2c3715SXin Li VERIFY(( internal::has_nullary_operator<internal::scalar_constant_op<float> >::value ));
304*bf2c3715SXin Li VERIFY(( !internal::has_unary_operator<internal::scalar_constant_op<float> >::value ));
305*bf2c3715SXin Li VERIFY(( !internal::has_binary_operator<internal::scalar_constant_op<float> >::value ));
306*bf2c3715SXin Li VERIFY(( internal::functor_has_linear_access<internal::scalar_constant_op<float> >::ret ));
307*bf2c3715SXin Li
308*bf2c3715SXin Li VERIFY(( !internal::has_nullary_operator<internal::linspaced_op<int> >::value ));
309*bf2c3715SXin Li VERIFY(( internal::has_unary_operator<internal::linspaced_op<int> >::value ));
310*bf2c3715SXin Li VERIFY(( !internal::has_binary_operator<internal::linspaced_op<int> >::value ));
311*bf2c3715SXin Li VERIFY(( internal::functor_has_linear_access<internal::linspaced_op<int> >::ret ));
312*bf2c3715SXin Li }
313*bf2c3715SXin Li }
314*bf2c3715SXin Li
EIGEN_DECLARE_TEST(nullary)315*bf2c3715SXin Li EIGEN_DECLARE_TEST(nullary)
316*bf2c3715SXin Li {
317*bf2c3715SXin Li CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
318*bf2c3715SXin Li CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
319*bf2c3715SXin Li CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
320*bf2c3715SXin Li
321*bf2c3715SXin Li for(int i = 0; i < g_repeat*10; i++) {
322*bf2c3715SXin Li CALL_SUBTEST_3( testVectorType(VectorXcd(internal::random<int>(1,30000))) );
323*bf2c3715SXin Li CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,30000))) );
324*bf2c3715SXin Li CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
325*bf2c3715SXin Li CALL_SUBTEST_6( testVectorType(Vector3d()) );
326*bf2c3715SXin Li CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,30000))) );
327*bf2c3715SXin Li CALL_SUBTEST_8( testVectorType(Vector3f()) );
328*bf2c3715SXin Li CALL_SUBTEST_8( testVectorType(Vector4f()) );
329*bf2c3715SXin Li CALL_SUBTEST_8( testVectorType(Matrix<float,8,1>()) );
330*bf2c3715SXin Li CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
331*bf2c3715SXin Li
332*bf2c3715SXin Li CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(1,10))) );
333*bf2c3715SXin Li CALL_SUBTEST_9( testVectorType(VectorXi(internal::random<int>(9,300))) );
334*bf2c3715SXin Li CALL_SUBTEST_9( testVectorType(Matrix<int,1,1>()) );
335*bf2c3715SXin Li }
336*bf2c3715SXin Li
337*bf2c3715SXin Li CALL_SUBTEST_6( bug79<0>() );
338*bf2c3715SXin Li CALL_SUBTEST_6( bug1630<0>() );
339*bf2c3715SXin Li CALL_SUBTEST_9( nullary_overflow<0>() );
340*bf2c3715SXin Li CALL_SUBTEST_10( nullary_internal_logic<0>() );
341*bf2c3715SXin Li }
342