1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li // Copyright (C) 2010 Jitse Niesen <[email protected]>
6*bf2c3715SXin Li //
7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10*bf2c3715SXin Li
11*bf2c3715SXin Li #include "main.h"
12*bf2c3715SXin Li #include <Eigen/Eigenvalues>
13*bf2c3715SXin Li
hessenberg(int size=Size)14*bf2c3715SXin Li template<typename Scalar,int Size> void hessenberg(int size = Size)
15*bf2c3715SXin Li {
16*bf2c3715SXin Li typedef Matrix<Scalar,Size,Size> MatrixType;
17*bf2c3715SXin Li
18*bf2c3715SXin Li // Test basic functionality: A = U H U* and H is Hessenberg
19*bf2c3715SXin Li for(int counter = 0; counter < g_repeat; ++counter) {
20*bf2c3715SXin Li MatrixType m = MatrixType::Random(size,size);
21*bf2c3715SXin Li HessenbergDecomposition<MatrixType> hess(m);
22*bf2c3715SXin Li MatrixType Q = hess.matrixQ();
23*bf2c3715SXin Li MatrixType H = hess.matrixH();
24*bf2c3715SXin Li VERIFY_IS_APPROX(m, Q * H * Q.adjoint());
25*bf2c3715SXin Li for(int row = 2; row < size; ++row) {
26*bf2c3715SXin Li for(int col = 0; col < row-1; ++col) {
27*bf2c3715SXin Li VERIFY(H(row,col) == (typename MatrixType::Scalar)0);
28*bf2c3715SXin Li }
29*bf2c3715SXin Li }
30*bf2c3715SXin Li }
31*bf2c3715SXin Li
32*bf2c3715SXin Li // Test whether compute() and constructor returns same result
33*bf2c3715SXin Li MatrixType A = MatrixType::Random(size, size);
34*bf2c3715SXin Li HessenbergDecomposition<MatrixType> cs1;
35*bf2c3715SXin Li cs1.compute(A);
36*bf2c3715SXin Li HessenbergDecomposition<MatrixType> cs2(A);
37*bf2c3715SXin Li VERIFY_IS_EQUAL(cs1.matrixH().eval(), cs2.matrixH().eval());
38*bf2c3715SXin Li MatrixType cs1Q = cs1.matrixQ();
39*bf2c3715SXin Li MatrixType cs2Q = cs2.matrixQ();
40*bf2c3715SXin Li VERIFY_IS_EQUAL(cs1Q, cs2Q);
41*bf2c3715SXin Li
42*bf2c3715SXin Li // Test assertions for when used uninitialized
43*bf2c3715SXin Li HessenbergDecomposition<MatrixType> hessUninitialized;
44*bf2c3715SXin Li VERIFY_RAISES_ASSERT( hessUninitialized.matrixH() );
45*bf2c3715SXin Li VERIFY_RAISES_ASSERT( hessUninitialized.matrixQ() );
46*bf2c3715SXin Li VERIFY_RAISES_ASSERT( hessUninitialized.householderCoefficients() );
47*bf2c3715SXin Li VERIFY_RAISES_ASSERT( hessUninitialized.packedMatrix() );
48*bf2c3715SXin Li
49*bf2c3715SXin Li // TODO: Add tests for packedMatrix() and householderCoefficients()
50*bf2c3715SXin Li }
51*bf2c3715SXin Li
EIGEN_DECLARE_TEST(hessenberg)52*bf2c3715SXin Li EIGEN_DECLARE_TEST(hessenberg)
53*bf2c3715SXin Li {
54*bf2c3715SXin Li CALL_SUBTEST_1(( hessenberg<std::complex<double>,1>() ));
55*bf2c3715SXin Li CALL_SUBTEST_2(( hessenberg<std::complex<double>,2>() ));
56*bf2c3715SXin Li CALL_SUBTEST_3(( hessenberg<std::complex<float>,4>() ));
57*bf2c3715SXin Li CALL_SUBTEST_4(( hessenberg<float,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ));
58*bf2c3715SXin Li CALL_SUBTEST_5(( hessenberg<std::complex<double>,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ));
59*bf2c3715SXin Li
60*bf2c3715SXin Li // Test problem size constructors
61*bf2c3715SXin Li CALL_SUBTEST_6(HessenbergDecomposition<MatrixXf>(10));
62*bf2c3715SXin Li }
63