xref: /aosp_15_r20/external/eigen/test/geo_eulerangles.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2012 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li #include <Eigen/Geometry>
12*bf2c3715SXin Li #include <Eigen/LU>
13*bf2c3715SXin Li #include <Eigen/SVD>
14*bf2c3715SXin Li 
15*bf2c3715SXin Li 
16*bf2c3715SXin Li template<typename Scalar>
verify_euler(const Matrix<Scalar,3,1> & ea,int i,int j,int k)17*bf2c3715SXin Li void verify_euler(const Matrix<Scalar,3,1>& ea, int i, int j, int k)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li   typedef Matrix<Scalar,3,3> Matrix3;
20*bf2c3715SXin Li   typedef Matrix<Scalar,3,1> Vector3;
21*bf2c3715SXin Li   typedef AngleAxis<Scalar> AngleAxisx;
22*bf2c3715SXin Li   using std::abs;
23*bf2c3715SXin Li   Matrix3 m(AngleAxisx(ea[0], Vector3::Unit(i)) * AngleAxisx(ea[1], Vector3::Unit(j)) * AngleAxisx(ea[2], Vector3::Unit(k)));
24*bf2c3715SXin Li   Vector3 eabis = m.eulerAngles(i, j, k);
25*bf2c3715SXin Li   Matrix3 mbis(AngleAxisx(eabis[0], Vector3::Unit(i)) * AngleAxisx(eabis[1], Vector3::Unit(j)) * AngleAxisx(eabis[2], Vector3::Unit(k)));
26*bf2c3715SXin Li   VERIFY_IS_APPROX(m,  mbis);
27*bf2c3715SXin Li   /* If I==K, and ea[1]==0, then there no unique solution. */
28*bf2c3715SXin Li   /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */
29*bf2c3715SXin Li   if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) )
30*bf2c3715SXin Li     VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
31*bf2c3715SXin Li 
32*bf2c3715SXin Li   // approx_or_less_than does not work for 0
33*bf2c3715SXin Li   VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
34*bf2c3715SXin Li   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[0], Scalar(EIGEN_PI));
35*bf2c3715SXin Li   VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[1]);
36*bf2c3715SXin Li   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[1], Scalar(EIGEN_PI));
37*bf2c3715SXin Li   VERIFY_IS_APPROX_OR_LESS_THAN(-Scalar(EIGEN_PI), eabis[2]);
38*bf2c3715SXin Li   VERIFY_IS_APPROX_OR_LESS_THAN(eabis[2], Scalar(EIGEN_PI));
39*bf2c3715SXin Li }
40*bf2c3715SXin Li 
check_all_var(const Matrix<Scalar,3,1> & ea)41*bf2c3715SXin Li template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
42*bf2c3715SXin Li {
43*bf2c3715SXin Li   verify_euler(ea, 0,1,2);
44*bf2c3715SXin Li   verify_euler(ea, 0,1,0);
45*bf2c3715SXin Li   verify_euler(ea, 0,2,1);
46*bf2c3715SXin Li   verify_euler(ea, 0,2,0);
47*bf2c3715SXin Li 
48*bf2c3715SXin Li   verify_euler(ea, 1,2,0);
49*bf2c3715SXin Li   verify_euler(ea, 1,2,1);
50*bf2c3715SXin Li   verify_euler(ea, 1,0,2);
51*bf2c3715SXin Li   verify_euler(ea, 1,0,1);
52*bf2c3715SXin Li 
53*bf2c3715SXin Li   verify_euler(ea, 2,0,1);
54*bf2c3715SXin Li   verify_euler(ea, 2,0,2);
55*bf2c3715SXin Li   verify_euler(ea, 2,1,0);
56*bf2c3715SXin Li   verify_euler(ea, 2,1,2);
57*bf2c3715SXin Li }
58*bf2c3715SXin Li 
eulerangles()59*bf2c3715SXin Li template<typename Scalar> void eulerangles()
60*bf2c3715SXin Li {
61*bf2c3715SXin Li   typedef Matrix<Scalar,3,3> Matrix3;
62*bf2c3715SXin Li   typedef Matrix<Scalar,3,1> Vector3;
63*bf2c3715SXin Li   typedef Array<Scalar,3,1> Array3;
64*bf2c3715SXin Li   typedef Quaternion<Scalar> Quaternionx;
65*bf2c3715SXin Li   typedef AngleAxis<Scalar> AngleAxisx;
66*bf2c3715SXin Li 
67*bf2c3715SXin Li   Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
68*bf2c3715SXin Li   Quaternionx q1;
69*bf2c3715SXin Li   q1 = AngleAxisx(a, Vector3::Random().normalized());
70*bf2c3715SXin Li   Matrix3 m;
71*bf2c3715SXin Li   m = q1;
72*bf2c3715SXin Li 
73*bf2c3715SXin Li   Vector3 ea = m.eulerAngles(0,1,2);
74*bf2c3715SXin Li   check_all_var(ea);
75*bf2c3715SXin Li   ea = m.eulerAngles(0,1,0);
76*bf2c3715SXin Li   check_all_var(ea);
77*bf2c3715SXin Li 
78*bf2c3715SXin Li   // Check with purely random Quaternion:
79*bf2c3715SXin Li   q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
80*bf2c3715SXin Li   m = q1;
81*bf2c3715SXin Li   ea = m.eulerAngles(0,1,2);
82*bf2c3715SXin Li   check_all_var(ea);
83*bf2c3715SXin Li   ea = m.eulerAngles(0,1,0);
84*bf2c3715SXin Li   check_all_var(ea);
85*bf2c3715SXin Li 
86*bf2c3715SXin Li   // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
87*bf2c3715SXin Li   ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
88*bf2c3715SXin Li   check_all_var(ea);
89*bf2c3715SXin Li 
90*bf2c3715SXin Li   ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
91*bf2c3715SXin Li   check_all_var(ea);
92*bf2c3715SXin Li 
93*bf2c3715SXin Li   ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
94*bf2c3715SXin Li   check_all_var(ea);
95*bf2c3715SXin Li 
96*bf2c3715SXin Li   ea[1] = 0;
97*bf2c3715SXin Li   check_all_var(ea);
98*bf2c3715SXin Li 
99*bf2c3715SXin Li   ea.head(2).setZero();
100*bf2c3715SXin Li   check_all_var(ea);
101*bf2c3715SXin Li 
102*bf2c3715SXin Li   ea.setZero();
103*bf2c3715SXin Li   check_all_var(ea);
104*bf2c3715SXin Li }
105*bf2c3715SXin Li 
EIGEN_DECLARE_TEST(geo_eulerangles)106*bf2c3715SXin Li EIGEN_DECLARE_TEST(geo_eulerangles)
107*bf2c3715SXin Li {
108*bf2c3715SXin Li   for(int i = 0; i < g_repeat; i++) {
109*bf2c3715SXin Li     CALL_SUBTEST_1( eulerangles<float>() );
110*bf2c3715SXin Li     CALL_SUBTEST_2( eulerangles<double>() );
111*bf2c3715SXin Li   }
112*bf2c3715SXin Li }
113