1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2006-2010 Benoit Jacob <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li #include "main.h"
11*bf2c3715SXin Li
diagonal(const MatrixType & m)12*bf2c3715SXin Li template<typename MatrixType> void diagonal(const MatrixType& m)
13*bf2c3715SXin Li {
14*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar;
15*bf2c3715SXin Li
16*bf2c3715SXin Li Index rows = m.rows();
17*bf2c3715SXin Li Index cols = m.cols();
18*bf2c3715SXin Li
19*bf2c3715SXin Li MatrixType m1 = MatrixType::Random(rows, cols),
20*bf2c3715SXin Li m2 = MatrixType::Random(rows, cols);
21*bf2c3715SXin Li
22*bf2c3715SXin Li Scalar s1 = internal::random<Scalar>();
23*bf2c3715SXin Li
24*bf2c3715SXin Li //check diagonal()
25*bf2c3715SXin Li VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
26*bf2c3715SXin Li m2.diagonal() = 2 * m1.diagonal();
27*bf2c3715SXin Li m2.diagonal()[0] *= 3;
28*bf2c3715SXin Li
29*bf2c3715SXin Li if (rows>2)
30*bf2c3715SXin Li {
31*bf2c3715SXin Li enum {
32*bf2c3715SXin Li N1 = MatrixType::RowsAtCompileTime>2 ? 2 : 0,
33*bf2c3715SXin Li N2 = MatrixType::RowsAtCompileTime>1 ? -1 : 0
34*bf2c3715SXin Li };
35*bf2c3715SXin Li
36*bf2c3715SXin Li // check sub/super diagonal
37*bf2c3715SXin Li if(MatrixType::SizeAtCompileTime!=Dynamic)
38*bf2c3715SXin Li {
39*bf2c3715SXin Li VERIFY(m1.template diagonal<N1>().RowsAtCompileTime == m1.diagonal(N1).size());
40*bf2c3715SXin Li VERIFY(m1.template diagonal<N2>().RowsAtCompileTime == m1.diagonal(N2).size());
41*bf2c3715SXin Li }
42*bf2c3715SXin Li
43*bf2c3715SXin Li m2.template diagonal<N1>() = 2 * m1.template diagonal<N1>();
44*bf2c3715SXin Li VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
45*bf2c3715SXin Li m2.template diagonal<N1>()[0] *= 3;
46*bf2c3715SXin Li VERIFY_IS_APPROX(m2.template diagonal<N1>()[0], static_cast<Scalar>(6) * m1.template diagonal<N1>()[0]);
47*bf2c3715SXin Li
48*bf2c3715SXin Li
49*bf2c3715SXin Li m2.template diagonal<N2>() = 2 * m1.template diagonal<N2>();
50*bf2c3715SXin Li m2.template diagonal<N2>()[0] *= 3;
51*bf2c3715SXin Li VERIFY_IS_APPROX(m2.template diagonal<N2>()[0], static_cast<Scalar>(6) * m1.template diagonal<N2>()[0]);
52*bf2c3715SXin Li
53*bf2c3715SXin Li m2.diagonal(N1) = 2 * m1.diagonal(N1);
54*bf2c3715SXin Li VERIFY_IS_APPROX(m2.template diagonal<N1>(), static_cast<Scalar>(2) * m1.diagonal(N1));
55*bf2c3715SXin Li m2.diagonal(N1)[0] *= 3;
56*bf2c3715SXin Li VERIFY_IS_APPROX(m2.diagonal(N1)[0], static_cast<Scalar>(6) * m1.diagonal(N1)[0]);
57*bf2c3715SXin Li
58*bf2c3715SXin Li m2.diagonal(N2) = 2 * m1.diagonal(N2);
59*bf2c3715SXin Li VERIFY_IS_APPROX(m2.template diagonal<N2>(), static_cast<Scalar>(2) * m1.diagonal(N2));
60*bf2c3715SXin Li m2.diagonal(N2)[0] *= 3;
61*bf2c3715SXin Li VERIFY_IS_APPROX(m2.diagonal(N2)[0], static_cast<Scalar>(6) * m1.diagonal(N2)[0]);
62*bf2c3715SXin Li
63*bf2c3715SXin Li m2.diagonal(N2).x() = s1;
64*bf2c3715SXin Li VERIFY_IS_APPROX(m2.diagonal(N2).x(), s1);
65*bf2c3715SXin Li m2.diagonal(N2).coeffRef(0) = Scalar(2)*s1;
66*bf2c3715SXin Li VERIFY_IS_APPROX(m2.diagonal(N2).coeff(0), Scalar(2)*s1);
67*bf2c3715SXin Li }
68*bf2c3715SXin Li
69*bf2c3715SXin Li VERIFY( m1.diagonal( cols).size()==0 );
70*bf2c3715SXin Li VERIFY( m1.diagonal(-rows).size()==0 );
71*bf2c3715SXin Li }
72*bf2c3715SXin Li
diagonal_assert(const MatrixType & m)73*bf2c3715SXin Li template<typename MatrixType> void diagonal_assert(const MatrixType& m) {
74*bf2c3715SXin Li Index rows = m.rows();
75*bf2c3715SXin Li Index cols = m.cols();
76*bf2c3715SXin Li
77*bf2c3715SXin Li MatrixType m1 = MatrixType::Random(rows, cols);
78*bf2c3715SXin Li
79*bf2c3715SXin Li if (rows>=2 && cols>=2)
80*bf2c3715SXin Li {
81*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1 += m1.diagonal() );
82*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1 -= m1.diagonal() );
83*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1.array() *= m1.diagonal().array() );
84*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1.array() /= m1.diagonal().array() );
85*bf2c3715SXin Li }
86*bf2c3715SXin Li
87*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1.diagonal(cols+1) );
88*bf2c3715SXin Li VERIFY_RAISES_ASSERT( m1.diagonal(-(rows+1)) );
89*bf2c3715SXin Li }
90*bf2c3715SXin Li
EIGEN_DECLARE_TEST(diagonal)91*bf2c3715SXin Li EIGEN_DECLARE_TEST(diagonal)
92*bf2c3715SXin Li {
93*bf2c3715SXin Li for(int i = 0; i < g_repeat; i++) {
94*bf2c3715SXin Li CALL_SUBTEST_1( diagonal(Matrix<float, 1, 1>()) );
95*bf2c3715SXin Li CALL_SUBTEST_1( diagonal(Matrix<float, 4, 9>()) );
96*bf2c3715SXin Li CALL_SUBTEST_1( diagonal(Matrix<float, 7, 3>()) );
97*bf2c3715SXin Li CALL_SUBTEST_2( diagonal(Matrix4d()) );
98*bf2c3715SXin Li CALL_SUBTEST_2( diagonal(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
99*bf2c3715SXin Li CALL_SUBTEST_2( diagonal(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
100*bf2c3715SXin Li CALL_SUBTEST_2( diagonal(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
101*bf2c3715SXin Li CALL_SUBTEST_1( diagonal(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
102*bf2c3715SXin Li CALL_SUBTEST_1( diagonal(Matrix<float,Dynamic,4>(3, 4)) );
103*bf2c3715SXin Li CALL_SUBTEST_1( diagonal_assert(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
104*bf2c3715SXin Li }
105*bf2c3715SXin Li }
106