xref: /aosp_15_r20/external/eigen/test/block.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
11 #include "main.h"
12 
13 template<typename MatrixType, typename Index, typename Scalar>
14 typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType & m1,Index r1,Index r2,Index c1,Index c2,const Scalar & s1)15 block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
16   // check cwise-Functions:
17   VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
18   VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
19 
20   VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
21   VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
22 
23   return Scalar(0);
24 }
25 
26 template<typename MatrixType, typename Index, typename Scalar>
27 typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType &,Index,Index,Index,Index,const Scalar &)28 block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
29   return Scalar(0);
30 }
31 
32 // Check at compile-time that T1==T2, and at runtime-time that a==b
33 template<typename T1,typename T2>
34 typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type
is_same_block(const T1 & a,const T2 & b)35 is_same_block(const T1& a, const T2& b)
36 {
37   return a.isApprox(b);
38 }
39 
block(const MatrixType & m)40 template<typename MatrixType> void block(const MatrixType& m)
41 {
42   typedef typename MatrixType::Scalar Scalar;
43   typedef typename MatrixType::RealScalar RealScalar;
44   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
45   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
46   typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::IsRowMajor?RowMajor:ColMajor> DynamicMatrixType;
47   typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
48 
49   Index rows = m.rows();
50   Index cols = m.cols();
51 
52   MatrixType m1 = MatrixType::Random(rows, cols),
53              m1_copy = m1,
54              m2 = MatrixType::Random(rows, cols),
55              m3(rows, cols),
56              ones = MatrixType::Ones(rows, cols);
57   VectorType v1 = VectorType::Random(rows);
58 
59   Scalar s1 = internal::random<Scalar>();
60 
61   Index r1 = internal::random<Index>(0,rows-1);
62   Index r2 = internal::random<Index>(r1,rows-1);
63   Index c1 = internal::random<Index>(0,cols-1);
64   Index c2 = internal::random<Index>(c1,cols-1);
65 
66   block_real_only(m1, r1, r2, c1, c1, s1);
67 
68   //check row() and col()
69   VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
70   //check operator(), both constant and non-constant, on row() and col()
71   m1 = m1_copy;
72   m1.row(r1) += s1 * m1_copy.row(r2);
73   VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
74   // check nested block xpr on lhs
75   m1.row(r1).row(0) += s1 * m1_copy.row(r2);
76   VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
77   m1 = m1_copy;
78   m1.col(c1) += s1 * m1_copy.col(c2);
79   VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
80   m1.col(c1).col(0) += s1 * m1_copy.col(c2);
81   VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
82 
83 
84   //check block()
85   Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
86 
87   RowVectorType br1(m1.block(r1,0,1,cols));
88   VectorType bc1(m1.block(0,c1,rows,1));
89   VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
90   VERIFY_IS_EQUAL(m1.row(r1), br1);
91   VERIFY_IS_EQUAL(m1.col(c1), bc1);
92   //check operator(), both constant and non-constant, on block()
93   m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
94   m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
95 
96   const Index BlockRows = 2;
97   const Index BlockCols = 5;
98 
99   if (rows>=5 && cols>=8)
100   {
101     // test fixed block() as lvalue
102     m1.template block<BlockRows,BlockCols>(1,1) *= s1;
103     // test operator() on fixed block() both as constant and non-constant
104     m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
105     // check that fixed block() and block() agree
106     Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
107     VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
108 
109     // same tests with mixed fixed/dynamic size
110     m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
111     m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
112     Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
113     VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
114 
115     VERIFY(is_same_block(m1.block(3,3,BlockRows,BlockCols), m1.block(3,3,fix<Dynamic>(BlockRows),fix<Dynamic>(BlockCols))));
116     VERIFY(is_same_block(m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,BlockCols)));
117     VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>(),fix<BlockCols>)));
118     VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,fix<BlockCols>(BlockCols))));
119   }
120 
121   if (rows>2)
122   {
123     // test sub vectors
124     VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
125     VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
126     VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
127     VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
128     Index i = rows-2;
129     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
130     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
131     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
132     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
133     i = internal::random<Index>(0,rows-2);
134     VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
135   }
136 
137   // stress some basic stuffs with block matrices
138   VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
139   VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
140 
141   VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
142   VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
143 
144   // check that linear acccessors works on blocks
145   m1 = m1_copy;
146   if((MatrixType::Flags&RowMajorBit)==0)
147     VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
148   else
149     VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
150 
151 
152   // now test some block-inside-of-block.
153 
154   // expressions with direct access
155   VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
156   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
157   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
158   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
159   VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
160 
161   // expressions without direct access
162   VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
163   VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
164   VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).eval().row(r1).segment(c1,c2-c1+1)) );
165   VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
166   VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
167   VERIFY_IS_APPROX( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
168   VERIFY_IS_APPROX( ((m1+m2).template block<Dynamic,1>(r1,c1,r2-r1+1,1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)) );
169   VERIFY_IS_APPROX( ((m1+m2).template block<1,Dynamic>(r1,c1,1,c2-c1+1)) , ((m1+m2).eval().row(r1).eval().segment(c1,c2-c1+1)) );
170   VERIFY_IS_APPROX( ((m1+m2).transpose().template block<1,Dynamic>(c1,r1,1,r2-r1+1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)).transpose() );
171   VERIFY_IS_APPROX( (m1+m2).row(r1).eval(), (m1+m2).eval().row(r1) );
172   VERIFY_IS_APPROX( (m1+m2).adjoint().col(r1).eval(), (m1+m2).adjoint().eval().col(r1) );
173   VERIFY_IS_APPROX( (m1+m2).adjoint().row(c1).eval(), (m1+m2).adjoint().eval().row(c1) );
174   VERIFY_IS_APPROX( (m1*1).row(r1).segment(c1,c2-c1+1).eval(), m1.row(r1).eval().segment(c1,c2-c1+1).eval() );
175   VERIFY_IS_APPROX( m1.col(c1).reverse().segment(r1,r2-r1+1).eval(),m1.col(c1).reverse().eval().segment(r1,r2-r1+1).eval() );
176 
177   VERIFY_IS_APPROX( (m1*1).topRows(r1),  m1.topRows(r1) );
178   VERIFY_IS_APPROX( (m1*1).leftCols(c1), m1.leftCols(c1) );
179   VERIFY_IS_APPROX( (m1*1).transpose().topRows(c1), m1.transpose().topRows(c1) );
180   VERIFY_IS_APPROX( (m1*1).transpose().leftCols(r1), m1.transpose().leftCols(r1) );
181   VERIFY_IS_APPROX( (m1*1).transpose().middleRows(c1,c2-c1+1), m1.transpose().middleRows(c1,c2-c1+1) );
182   VERIFY_IS_APPROX( (m1*1).transpose().middleCols(r1,r2-r1+1), m1.transpose().middleCols(r1,r2-r1+1) );
183 
184   // evaluation into plain matrices from expressions with direct access (stress MapBase)
185   DynamicMatrixType dm;
186   DynamicVectorType dv;
187   dm.setZero();
188   dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
189   VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
190   dm.setZero();
191   dv.setZero();
192   dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
193   dv = m1.row(r1).segment(c1,c2-c1+1);
194   VERIFY_IS_EQUAL(dv, dm);
195   dm.setZero();
196   dv.setZero();
197   dm = m1.col(c1).segment(r1,r2-r1+1);
198   dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
199   VERIFY_IS_EQUAL(dv, dm);
200   dm.setZero();
201   dv.setZero();
202   dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
203   dv = m1.row(r1).segment(c1,c2-c1+1);
204   VERIFY_IS_EQUAL(dv, dm);
205   dm.setZero();
206   dv.setZero();
207   dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
208   dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
209   VERIFY_IS_EQUAL(dv, dm);
210 
211   VERIFY_IS_EQUAL( (m1.template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
212   VERIFY_IS_EQUAL( (m1.template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
213   VERIFY_IS_EQUAL( ((m1*1).template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
214   VERIFY_IS_EQUAL( ((m1*1).template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
215 
216   if (rows>=2 && cols>=2)
217   {
218     VERIFY_RAISES_ASSERT( m1 += m1.col(0) );
219     VERIFY_RAISES_ASSERT( m1 -= m1.col(0) );
220     VERIFY_RAISES_ASSERT( m1.array() *= m1.col(0).array() );
221     VERIFY_RAISES_ASSERT( m1.array() /= m1.col(0).array() );
222   }
223 
224   VERIFY_IS_EQUAL( m1.template subVector<Horizontal>(r1), m1.row(r1) );
225   VERIFY_IS_APPROX( (m1+m1).template subVector<Horizontal>(r1), (m1+m1).row(r1) );
226   VERIFY_IS_EQUAL( m1.template subVector<Vertical>(c1), m1.col(c1) );
227   VERIFY_IS_APPROX( (m1+m1).template subVector<Vertical>(c1), (m1+m1).col(c1) );
228   VERIFY_IS_EQUAL( m1.template subVectors<Horizontal>(), m1.rows() );
229   VERIFY_IS_EQUAL( m1.template subVectors<Vertical>(), m1.cols() );
230 
231   if (rows>=2 || cols>=2) {
232     VERIFY_IS_EQUAL( int(m1.middleCols(0,0).IsRowMajor), int(m1.IsRowMajor) );
233     VERIFY_IS_EQUAL( m1.middleCols(0,0).outerSize(), m1.IsRowMajor ? rows : 0);
234     VERIFY_IS_EQUAL( m1.middleCols(0,0).innerSize(), m1.IsRowMajor ? 0 : rows);
235 
236     VERIFY_IS_EQUAL( int(m1.middleRows(0,0).IsRowMajor), int(m1.IsRowMajor) );
237     VERIFY_IS_EQUAL( m1.middleRows(0,0).outerSize(), m1.IsRowMajor ? 0 : cols);
238     VERIFY_IS_EQUAL( m1.middleRows(0,0).innerSize(), m1.IsRowMajor ? cols : 0);
239   }
240 }
241 
242 
243 template<typename MatrixType>
compare_using_data_and_stride(const MatrixType & m)244 void compare_using_data_and_stride(const MatrixType& m)
245 {
246   Index rows = m.rows();
247   Index cols = m.cols();
248   Index size = m.size();
249   Index innerStride = m.innerStride();
250   Index outerStride = m.outerStride();
251   Index rowStride = m.rowStride();
252   Index colStride = m.colStride();
253   const typename MatrixType::Scalar* data = m.data();
254 
255   for(int j=0;j<cols;++j)
256     for(int i=0;i<rows;++i)
257       VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
258 
259   if(!MatrixType::IsVectorAtCompileTime)
260   {
261     for(int j=0;j<cols;++j)
262       for(int i=0;i<rows;++i)
263         VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
264                                      ? i*outerStride + j*innerStride
265                                      : j*outerStride + i*innerStride]);
266   }
267 
268   if(MatrixType::IsVectorAtCompileTime)
269   {
270     VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
271     for (int i=0;i<size;++i)
272       VERIFY(m.coeff(i) == data[i*innerStride]);
273   }
274 }
275 
276 template<typename MatrixType>
data_and_stride(const MatrixType & m)277 void data_and_stride(const MatrixType& m)
278 {
279   Index rows = m.rows();
280   Index cols = m.cols();
281 
282   Index r1 = internal::random<Index>(0,rows-1);
283   Index r2 = internal::random<Index>(r1,rows-1);
284   Index c1 = internal::random<Index>(0,cols-1);
285   Index c2 = internal::random<Index>(c1,cols-1);
286 
287   MatrixType m1 = MatrixType::Random(rows, cols);
288   compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
289   compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
290   compare_using_data_and_stride(m1.row(r1));
291   compare_using_data_and_stride(m1.col(c1));
292   compare_using_data_and_stride(m1.row(r1).transpose());
293   compare_using_data_and_stride(m1.col(c1).transpose());
294 }
295 
EIGEN_DECLARE_TEST(block)296 EIGEN_DECLARE_TEST(block)
297 {
298   for(int i = 0; i < g_repeat; i++) {
299     CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
300     CALL_SUBTEST_1( block(Matrix<float, 1, Dynamic>(internal::random(2,50))) );
301     CALL_SUBTEST_1( block(Matrix<float, Dynamic, 1>(internal::random(2,50))) );
302     CALL_SUBTEST_2( block(Matrix4d()) );
303     CALL_SUBTEST_3( block(MatrixXcf(internal::random(2,50), internal::random(2,50))) );
304     CALL_SUBTEST_4( block(MatrixXi(internal::random(2,50), internal::random(2,50))) );
305     CALL_SUBTEST_5( block(MatrixXcd(internal::random(2,50), internal::random(2,50))) );
306     CALL_SUBTEST_6( block(MatrixXf(internal::random(2,50), internal::random(2,50))) );
307     CALL_SUBTEST_7( block(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(2,50), internal::random(2,50))) );
308 
309     CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
310 
311 #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
312     CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
313     CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
314 #endif
315   }
316 }
317