1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
11 #include "main.h"
12
13 template<typename MatrixType, typename Index, typename Scalar>
14 typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType & m1,Index r1,Index r2,Index c1,Index c2,const Scalar & s1)15 block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
16 // check cwise-Functions:
17 VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
18 VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
19
20 VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
21 VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
22
23 return Scalar(0);
24 }
25
26 template<typename MatrixType, typename Index, typename Scalar>
27 typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType &,Index,Index,Index,Index,const Scalar &)28 block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
29 return Scalar(0);
30 }
31
32 // Check at compile-time that T1==T2, and at runtime-time that a==b
33 template<typename T1,typename T2>
34 typename internal::enable_if<internal::is_same<T1,T2>::value,bool>::type
is_same_block(const T1 & a,const T2 & b)35 is_same_block(const T1& a, const T2& b)
36 {
37 return a.isApprox(b);
38 }
39
block(const MatrixType & m)40 template<typename MatrixType> void block(const MatrixType& m)
41 {
42 typedef typename MatrixType::Scalar Scalar;
43 typedef typename MatrixType::RealScalar RealScalar;
44 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
45 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
46 typedef Matrix<Scalar, Dynamic, Dynamic, MatrixType::IsRowMajor?RowMajor:ColMajor> DynamicMatrixType;
47 typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
48
49 Index rows = m.rows();
50 Index cols = m.cols();
51
52 MatrixType m1 = MatrixType::Random(rows, cols),
53 m1_copy = m1,
54 m2 = MatrixType::Random(rows, cols),
55 m3(rows, cols),
56 ones = MatrixType::Ones(rows, cols);
57 VectorType v1 = VectorType::Random(rows);
58
59 Scalar s1 = internal::random<Scalar>();
60
61 Index r1 = internal::random<Index>(0,rows-1);
62 Index r2 = internal::random<Index>(r1,rows-1);
63 Index c1 = internal::random<Index>(0,cols-1);
64 Index c2 = internal::random<Index>(c1,cols-1);
65
66 block_real_only(m1, r1, r2, c1, c1, s1);
67
68 //check row() and col()
69 VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
70 //check operator(), both constant and non-constant, on row() and col()
71 m1 = m1_copy;
72 m1.row(r1) += s1 * m1_copy.row(r2);
73 VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
74 // check nested block xpr on lhs
75 m1.row(r1).row(0) += s1 * m1_copy.row(r2);
76 VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
77 m1 = m1_copy;
78 m1.col(c1) += s1 * m1_copy.col(c2);
79 VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
80 m1.col(c1).col(0) += s1 * m1_copy.col(c2);
81 VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
82
83
84 //check block()
85 Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
86
87 RowVectorType br1(m1.block(r1,0,1,cols));
88 VectorType bc1(m1.block(0,c1,rows,1));
89 VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
90 VERIFY_IS_EQUAL(m1.row(r1), br1);
91 VERIFY_IS_EQUAL(m1.col(c1), bc1);
92 //check operator(), both constant and non-constant, on block()
93 m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
94 m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
95
96 const Index BlockRows = 2;
97 const Index BlockCols = 5;
98
99 if (rows>=5 && cols>=8)
100 {
101 // test fixed block() as lvalue
102 m1.template block<BlockRows,BlockCols>(1,1) *= s1;
103 // test operator() on fixed block() both as constant and non-constant
104 m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
105 // check that fixed block() and block() agree
106 Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
107 VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
108
109 // same tests with mixed fixed/dynamic size
110 m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
111 m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
112 Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
113 VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
114
115 VERIFY(is_same_block(m1.block(3,3,BlockRows,BlockCols), m1.block(3,3,fix<Dynamic>(BlockRows),fix<Dynamic>(BlockCols))));
116 VERIFY(is_same_block(m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,BlockCols)));
117 VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>(),fix<BlockCols>)));
118 VERIFY(is_same_block(m1.template block<BlockRows,BlockCols>(1,1,BlockRows,BlockCols), m1.block(1,1,fix<BlockRows>,fix<BlockCols>(BlockCols))));
119 }
120
121 if (rows>2)
122 {
123 // test sub vectors
124 VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
125 VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
126 VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
127 VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
128 Index i = rows-2;
129 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
130 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
131 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
132 VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
133 i = internal::random<Index>(0,rows-2);
134 VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
135 }
136
137 // stress some basic stuffs with block matrices
138 VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
139 VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
140
141 VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
142 VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
143
144 // check that linear acccessors works on blocks
145 m1 = m1_copy;
146 if((MatrixType::Flags&RowMajorBit)==0)
147 VERIFY_IS_EQUAL(m1.leftCols(c1).coeff(r1+c1*rows), m1(r1,c1));
148 else
149 VERIFY_IS_EQUAL(m1.topRows(r1).coeff(c1+r1*cols), m1(r1,c1));
150
151
152 // now test some block-inside-of-block.
153
154 // expressions with direct access
155 VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
156 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
157 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
158 VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
159 VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
160
161 // expressions without direct access
162 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
163 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
164 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).eval().row(r1).segment(c1,c2-c1+1)) );
165 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
166 VERIFY_IS_APPROX( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
167 VERIFY_IS_APPROX( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
168 VERIFY_IS_APPROX( ((m1+m2).template block<Dynamic,1>(r1,c1,r2-r1+1,1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)) );
169 VERIFY_IS_APPROX( ((m1+m2).template block<1,Dynamic>(r1,c1,1,c2-c1+1)) , ((m1+m2).eval().row(r1).eval().segment(c1,c2-c1+1)) );
170 VERIFY_IS_APPROX( ((m1+m2).transpose().template block<1,Dynamic>(c1,r1,1,r2-r1+1)) , ((m1+m2).eval().col(c1).eval().segment(r1,r2-r1+1)).transpose() );
171 VERIFY_IS_APPROX( (m1+m2).row(r1).eval(), (m1+m2).eval().row(r1) );
172 VERIFY_IS_APPROX( (m1+m2).adjoint().col(r1).eval(), (m1+m2).adjoint().eval().col(r1) );
173 VERIFY_IS_APPROX( (m1+m2).adjoint().row(c1).eval(), (m1+m2).adjoint().eval().row(c1) );
174 VERIFY_IS_APPROX( (m1*1).row(r1).segment(c1,c2-c1+1).eval(), m1.row(r1).eval().segment(c1,c2-c1+1).eval() );
175 VERIFY_IS_APPROX( m1.col(c1).reverse().segment(r1,r2-r1+1).eval(),m1.col(c1).reverse().eval().segment(r1,r2-r1+1).eval() );
176
177 VERIFY_IS_APPROX( (m1*1).topRows(r1), m1.topRows(r1) );
178 VERIFY_IS_APPROX( (m1*1).leftCols(c1), m1.leftCols(c1) );
179 VERIFY_IS_APPROX( (m1*1).transpose().topRows(c1), m1.transpose().topRows(c1) );
180 VERIFY_IS_APPROX( (m1*1).transpose().leftCols(r1), m1.transpose().leftCols(r1) );
181 VERIFY_IS_APPROX( (m1*1).transpose().middleRows(c1,c2-c1+1), m1.transpose().middleRows(c1,c2-c1+1) );
182 VERIFY_IS_APPROX( (m1*1).transpose().middleCols(r1,r2-r1+1), m1.transpose().middleCols(r1,r2-r1+1) );
183
184 // evaluation into plain matrices from expressions with direct access (stress MapBase)
185 DynamicMatrixType dm;
186 DynamicVectorType dv;
187 dm.setZero();
188 dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
189 VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
190 dm.setZero();
191 dv.setZero();
192 dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
193 dv = m1.row(r1).segment(c1,c2-c1+1);
194 VERIFY_IS_EQUAL(dv, dm);
195 dm.setZero();
196 dv.setZero();
197 dm = m1.col(c1).segment(r1,r2-r1+1);
198 dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
199 VERIFY_IS_EQUAL(dv, dm);
200 dm.setZero();
201 dv.setZero();
202 dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
203 dv = m1.row(r1).segment(c1,c2-c1+1);
204 VERIFY_IS_EQUAL(dv, dm);
205 dm.setZero();
206 dv.setZero();
207 dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
208 dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
209 VERIFY_IS_EQUAL(dv, dm);
210
211 VERIFY_IS_EQUAL( (m1.template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
212 VERIFY_IS_EQUAL( (m1.template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
213 VERIFY_IS_EQUAL( ((m1*1).template block<Dynamic,1>(1,0,0,1)), m1.block(1,0,0,1));
214 VERIFY_IS_EQUAL( ((m1*1).template block<1,Dynamic>(0,1,1,0)), m1.block(0,1,1,0));
215
216 if (rows>=2 && cols>=2)
217 {
218 VERIFY_RAISES_ASSERT( m1 += m1.col(0) );
219 VERIFY_RAISES_ASSERT( m1 -= m1.col(0) );
220 VERIFY_RAISES_ASSERT( m1.array() *= m1.col(0).array() );
221 VERIFY_RAISES_ASSERT( m1.array() /= m1.col(0).array() );
222 }
223
224 VERIFY_IS_EQUAL( m1.template subVector<Horizontal>(r1), m1.row(r1) );
225 VERIFY_IS_APPROX( (m1+m1).template subVector<Horizontal>(r1), (m1+m1).row(r1) );
226 VERIFY_IS_EQUAL( m1.template subVector<Vertical>(c1), m1.col(c1) );
227 VERIFY_IS_APPROX( (m1+m1).template subVector<Vertical>(c1), (m1+m1).col(c1) );
228 VERIFY_IS_EQUAL( m1.template subVectors<Horizontal>(), m1.rows() );
229 VERIFY_IS_EQUAL( m1.template subVectors<Vertical>(), m1.cols() );
230
231 if (rows>=2 || cols>=2) {
232 VERIFY_IS_EQUAL( int(m1.middleCols(0,0).IsRowMajor), int(m1.IsRowMajor) );
233 VERIFY_IS_EQUAL( m1.middleCols(0,0).outerSize(), m1.IsRowMajor ? rows : 0);
234 VERIFY_IS_EQUAL( m1.middleCols(0,0).innerSize(), m1.IsRowMajor ? 0 : rows);
235
236 VERIFY_IS_EQUAL( int(m1.middleRows(0,0).IsRowMajor), int(m1.IsRowMajor) );
237 VERIFY_IS_EQUAL( m1.middleRows(0,0).outerSize(), m1.IsRowMajor ? 0 : cols);
238 VERIFY_IS_EQUAL( m1.middleRows(0,0).innerSize(), m1.IsRowMajor ? cols : 0);
239 }
240 }
241
242
243 template<typename MatrixType>
compare_using_data_and_stride(const MatrixType & m)244 void compare_using_data_and_stride(const MatrixType& m)
245 {
246 Index rows = m.rows();
247 Index cols = m.cols();
248 Index size = m.size();
249 Index innerStride = m.innerStride();
250 Index outerStride = m.outerStride();
251 Index rowStride = m.rowStride();
252 Index colStride = m.colStride();
253 const typename MatrixType::Scalar* data = m.data();
254
255 for(int j=0;j<cols;++j)
256 for(int i=0;i<rows;++i)
257 VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
258
259 if(!MatrixType::IsVectorAtCompileTime)
260 {
261 for(int j=0;j<cols;++j)
262 for(int i=0;i<rows;++i)
263 VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
264 ? i*outerStride + j*innerStride
265 : j*outerStride + i*innerStride]);
266 }
267
268 if(MatrixType::IsVectorAtCompileTime)
269 {
270 VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
271 for (int i=0;i<size;++i)
272 VERIFY(m.coeff(i) == data[i*innerStride]);
273 }
274 }
275
276 template<typename MatrixType>
data_and_stride(const MatrixType & m)277 void data_and_stride(const MatrixType& m)
278 {
279 Index rows = m.rows();
280 Index cols = m.cols();
281
282 Index r1 = internal::random<Index>(0,rows-1);
283 Index r2 = internal::random<Index>(r1,rows-1);
284 Index c1 = internal::random<Index>(0,cols-1);
285 Index c2 = internal::random<Index>(c1,cols-1);
286
287 MatrixType m1 = MatrixType::Random(rows, cols);
288 compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
289 compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
290 compare_using_data_and_stride(m1.row(r1));
291 compare_using_data_and_stride(m1.col(c1));
292 compare_using_data_and_stride(m1.row(r1).transpose());
293 compare_using_data_and_stride(m1.col(c1).transpose());
294 }
295
EIGEN_DECLARE_TEST(block)296 EIGEN_DECLARE_TEST(block)
297 {
298 for(int i = 0; i < g_repeat; i++) {
299 CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
300 CALL_SUBTEST_1( block(Matrix<float, 1, Dynamic>(internal::random(2,50))) );
301 CALL_SUBTEST_1( block(Matrix<float, Dynamic, 1>(internal::random(2,50))) );
302 CALL_SUBTEST_2( block(Matrix4d()) );
303 CALL_SUBTEST_3( block(MatrixXcf(internal::random(2,50), internal::random(2,50))) );
304 CALL_SUBTEST_4( block(MatrixXi(internal::random(2,50), internal::random(2,50))) );
305 CALL_SUBTEST_5( block(MatrixXcd(internal::random(2,50), internal::random(2,50))) );
306 CALL_SUBTEST_6( block(MatrixXf(internal::random(2,50), internal::random(2,50))) );
307 CALL_SUBTEST_7( block(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(2,50), internal::random(2,50))) );
308
309 CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
310
311 #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
312 CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
313 CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
314 #endif
315 }
316 }
317