1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #define EIGEN_NO_STATIC_ASSERT
11
12 #include "main.h"
13 #include "random_without_cast_overflow.h"
14
basicStuff(const MatrixType & m)15 template<typename MatrixType> void basicStuff(const MatrixType& m)
16 {
17 typedef typename MatrixType::Scalar Scalar;
18 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
19 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
20
21 Index rows = m.rows();
22 Index cols = m.cols();
23
24 // this test relies a lot on Random.h, and there's not much more that we can do
25 // to test it, hence I consider that we will have tested Random.h
26 MatrixType m1 = MatrixType::Random(rows, cols),
27 m2 = MatrixType::Random(rows, cols),
28 m3(rows, cols),
29 mzero = MatrixType::Zero(rows, cols),
30 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
31 VectorType v1 = VectorType::Random(rows),
32 vzero = VectorType::Zero(rows);
33 SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
34
35 Scalar x = 0;
36 while(x == Scalar(0)) x = internal::random<Scalar>();
37
38 Index r = internal::random<Index>(0, rows-1),
39 c = internal::random<Index>(0, cols-1);
40
41 m1.coeffRef(r,c) = x;
42 VERIFY_IS_APPROX(x, m1.coeff(r,c));
43 m1(r,c) = x;
44 VERIFY_IS_APPROX(x, m1(r,c));
45 v1.coeffRef(r) = x;
46 VERIFY_IS_APPROX(x, v1.coeff(r));
47 v1(r) = x;
48 VERIFY_IS_APPROX(x, v1(r));
49 v1[r] = x;
50 VERIFY_IS_APPROX(x, v1[r]);
51
52 // test fetching with various index types.
53 Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1));
54 x = v1(static_cast<char>(r1));
55 x = v1(static_cast<signed char>(r1));
56 x = v1(static_cast<unsigned char>(r1));
57 x = v1(static_cast<signed short>(r1));
58 x = v1(static_cast<unsigned short>(r1));
59 x = v1(static_cast<signed int>(r1));
60 x = v1(static_cast<unsigned int>(r1));
61 x = v1(static_cast<signed long>(r1));
62 x = v1(static_cast<unsigned long>(r1));
63 #if EIGEN_HAS_CXX11
64 x = v1(static_cast<long long int>(r1));
65 x = v1(static_cast<unsigned long long int>(r1));
66 #endif
67
68 VERIFY_IS_APPROX( v1, v1);
69 VERIFY_IS_NOT_APPROX( v1, 2*v1);
70 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
71 VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
72 VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
73 VERIFY_IS_APPROX( vzero, v1-v1);
74 VERIFY_IS_APPROX( m1, m1);
75 VERIFY_IS_NOT_APPROX( m1, 2*m1);
76 VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
77 VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
78 VERIFY_IS_APPROX( mzero, m1-m1);
79
80 // always test operator() on each read-only expression class,
81 // in order to check const-qualifiers.
82 // indeed, if an expression class (here Zero) is meant to be read-only,
83 // hence has no _write() method, the corresponding MatrixBase method (here zero())
84 // should return a const-qualified object so that it is the const-qualified
85 // operator() that gets called, which in turn calls _read().
86 VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
87
88 // now test copying a row-vector into a (column-)vector and conversely.
89 square.col(r) = square.row(r).eval();
90 Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
91 Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
92 rv = square.row(r);
93 cv = square.col(r);
94
95 VERIFY_IS_APPROX(rv, cv.transpose());
96
97 if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
98 {
99 VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
100 }
101
102 if(cols!=1 && rows!=1)
103 {
104 VERIFY_RAISES_ASSERT(m1[0]);
105 VERIFY_RAISES_ASSERT((m1+m1)[0]);
106 }
107
108 VERIFY_IS_APPROX(m3 = m1,m1);
109 MatrixType m4;
110 VERIFY_IS_APPROX(m4 = m1,m1);
111
112 m3.real() = m1.real();
113 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
114 VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
115
116 // check == / != operators
117 VERIFY(m1==m1);
118 VERIFY(m1!=m2);
119 VERIFY(!(m1==m2));
120 VERIFY(!(m1!=m1));
121 m1 = m2;
122 VERIFY(m1==m2);
123 VERIFY(!(m1!=m2));
124
125 // check automatic transposition
126 sm2.setZero();
127 for(Index i=0;i<rows;++i)
128 sm2.col(i) = sm1.row(i);
129 VERIFY_IS_APPROX(sm2,sm1.transpose());
130
131 sm2.setZero();
132 for(Index i=0;i<rows;++i)
133 sm2.col(i).noalias() = sm1.row(i);
134 VERIFY_IS_APPROX(sm2,sm1.transpose());
135
136 sm2.setZero();
137 for(Index i=0;i<rows;++i)
138 sm2.col(i).noalias() += sm1.row(i);
139 VERIFY_IS_APPROX(sm2,sm1.transpose());
140
141 sm2.setZero();
142 for(Index i=0;i<rows;++i)
143 sm2.col(i).noalias() -= sm1.row(i);
144 VERIFY_IS_APPROX(sm2,-sm1.transpose());
145
146 // check ternary usage
147 {
148 bool b = internal::random<int>(0,10)>5;
149 m3 = b ? m1 : m2;
150 if(b) VERIFY_IS_APPROX(m3,m1);
151 else VERIFY_IS_APPROX(m3,m2);
152 m3 = b ? -m1 : m2;
153 if(b) VERIFY_IS_APPROX(m3,-m1);
154 else VERIFY_IS_APPROX(m3,m2);
155 m3 = b ? m1 : -m2;
156 if(b) VERIFY_IS_APPROX(m3,m1);
157 else VERIFY_IS_APPROX(m3,-m2);
158 }
159 }
160
basicStuffComplex(const MatrixType & m)161 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
162 {
163 typedef typename MatrixType::Scalar Scalar;
164 typedef typename NumTraits<Scalar>::Real RealScalar;
165 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
166
167 Index rows = m.rows();
168 Index cols = m.cols();
169
170 Scalar s1 = internal::random<Scalar>(),
171 s2 = internal::random<Scalar>();
172
173 VERIFY(numext::real(s1)==numext::real_ref(s1));
174 VERIFY(numext::imag(s1)==numext::imag_ref(s1));
175 numext::real_ref(s1) = numext::real(s2);
176 numext::imag_ref(s1) = numext::imag(s2);
177 VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
178 // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
179
180 RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
181 rm2 = RealMatrixType::Random(rows,cols);
182 MatrixType cm(rows,cols);
183 cm.real() = rm1;
184 cm.imag() = rm2;
185 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
186 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
187 rm1.setZero();
188 rm2.setZero();
189 rm1 = cm.real();
190 rm2 = cm.imag();
191 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
192 VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
193 cm.real().setZero();
194 VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
195 VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
196 }
197
198 template<typename SrcScalar, typename TgtScalar>
199 struct casting_test {
runcasting_test200 static void run() {
201 Matrix<SrcScalar,4,4> m;
202 for (int i=0; i<m.rows(); ++i) {
203 for (int j=0; j<m.cols(); ++j) {
204 m(i, j) = internal::random_without_cast_overflow<SrcScalar,TgtScalar>::value();
205 }
206 }
207 Matrix<TgtScalar,4,4> n = m.template cast<TgtScalar>();
208 for (int i=0; i<m.rows(); ++i) {
209 for (int j=0; j<m.cols(); ++j) {
210 VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar,TgtScalar>(m(i, j))));
211 }
212 }
213 }
214 };
215
216 template<typename SrcScalar, typename EnableIf = void>
217 struct casting_test_runner {
runcasting_test_runner218 static void run() {
219 casting_test<SrcScalar, bool>::run();
220 casting_test<SrcScalar, int8_t>::run();
221 casting_test<SrcScalar, uint8_t>::run();
222 casting_test<SrcScalar, int16_t>::run();
223 casting_test<SrcScalar, uint16_t>::run();
224 casting_test<SrcScalar, int32_t>::run();
225 casting_test<SrcScalar, uint32_t>::run();
226 #if EIGEN_HAS_CXX11
227 casting_test<SrcScalar, int64_t>::run();
228 casting_test<SrcScalar, uint64_t>::run();
229 #endif
230 casting_test<SrcScalar, half>::run();
231 casting_test<SrcScalar, bfloat16>::run();
232 casting_test<SrcScalar, float>::run();
233 casting_test<SrcScalar, double>::run();
234 casting_test<SrcScalar, std::complex<float> >::run();
235 casting_test<SrcScalar, std::complex<double> >::run();
236 }
237 };
238
239 template<typename SrcScalar>
240 struct casting_test_runner<SrcScalar, typename internal::enable_if<(NumTraits<SrcScalar>::IsComplex)>::type>
241 {
runcasting_test_runner242 static void run() {
243 // Only a few casts from std::complex<T> are defined.
244 casting_test<SrcScalar, half>::run();
245 casting_test<SrcScalar, bfloat16>::run();
246 casting_test<SrcScalar, std::complex<float> >::run();
247 casting_test<SrcScalar, std::complex<double> >::run();
248 }
249 };
250
casting_all()251 void casting_all() {
252 casting_test_runner<bool>::run();
253 casting_test_runner<int8_t>::run();
254 casting_test_runner<uint8_t>::run();
255 casting_test_runner<int16_t>::run();
256 casting_test_runner<uint16_t>::run();
257 casting_test_runner<int32_t>::run();
258 casting_test_runner<uint32_t>::run();
259 #if EIGEN_HAS_CXX11
260 casting_test_runner<int64_t>::run();
261 casting_test_runner<uint64_t>::run();
262 #endif
263 casting_test_runner<half>::run();
264 casting_test_runner<bfloat16>::run();
265 casting_test_runner<float>::run();
266 casting_test_runner<double>::run();
267 casting_test_runner<std::complex<float> >::run();
268 casting_test_runner<std::complex<double> >::run();
269 }
270
271 template <typename Scalar>
fixedSizeMatrixConstruction()272 void fixedSizeMatrixConstruction()
273 {
274 Scalar raw[4];
275 for(int k=0; k<4; ++k)
276 raw[k] = internal::random<Scalar>();
277
278 {
279 Matrix<Scalar,4,1> m(raw);
280 Array<Scalar,4,1> a(raw);
281 for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
282 for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
283 VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
284 VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
285 }
286 {
287 Matrix<Scalar,3,1> m(raw);
288 Array<Scalar,3,1> a(raw);
289 for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
290 for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
291 VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
292 VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
293 }
294 {
295 Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
296 Array<Scalar,2,1> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
297 for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
298 for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
299 VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
300 VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
301 for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
302 for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
303 }
304 {
305 Matrix<Scalar,1,2> m(raw),
306 m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
307 m3( (int(raw[0])), (int(raw[1])) ),
308 m4( (float(raw[0])), (float(raw[1])) );
309 Array<Scalar,1,2> a(raw), a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
310 for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
311 for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
312 VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
313 VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
314 for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
315 for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
316 for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
317 for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
318 }
319 {
320 Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
321 Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
322 VERIFY(m(0) == raw[0]);
323 VERIFY(a(0) == raw[0]);
324 VERIFY(m1(0) == raw[0]);
325 VERIFY(a1(0) == raw[0]);
326 VERIFY(m2(0) == DenseIndex(raw[0]));
327 VERIFY(a2(0) == DenseIndex(raw[0]));
328 VERIFY(m3(0) == int(raw[0]));
329 VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
330 VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
331 }
332 }
333
EIGEN_DECLARE_TEST(basicstuff)334 EIGEN_DECLARE_TEST(basicstuff)
335 {
336 for(int i = 0; i < g_repeat; i++) {
337 CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
338 CALL_SUBTEST_2( basicStuff(Matrix4d()) );
339 CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
340 CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
341 CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
342 CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
343 CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
344 CALL_SUBTEST_8( casting_all() );
345
346 CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
347 CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
348 }
349
350 CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
351 CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
352 CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
353 CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
354 CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
355 CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
356 }
357