xref: /aosp_15_r20/external/eigen/test/basicstuff.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT
11 
12 #include "main.h"
13 #include "random_without_cast_overflow.h"
14 
basicStuff(const MatrixType & m)15 template<typename MatrixType> void basicStuff(const MatrixType& m)
16 {
17   typedef typename MatrixType::Scalar Scalar;
18   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
19   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
20 
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   // this test relies a lot on Random.h, and there's not much more that we can do
25   // to test it, hence I consider that we will have tested Random.h
26   MatrixType m1 = MatrixType::Random(rows, cols),
27              m2 = MatrixType::Random(rows, cols),
28              m3(rows, cols),
29              mzero = MatrixType::Zero(rows, cols),
30              square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
31   VectorType v1 = VectorType::Random(rows),
32              vzero = VectorType::Zero(rows);
33   SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
34 
35   Scalar x = 0;
36   while(x == Scalar(0)) x = internal::random<Scalar>();
37 
38   Index r = internal::random<Index>(0, rows-1),
39         c = internal::random<Index>(0, cols-1);
40 
41   m1.coeffRef(r,c) = x;
42   VERIFY_IS_APPROX(x, m1.coeff(r,c));
43   m1(r,c) = x;
44   VERIFY_IS_APPROX(x, m1(r,c));
45   v1.coeffRef(r) = x;
46   VERIFY_IS_APPROX(x, v1.coeff(r));
47   v1(r) = x;
48   VERIFY_IS_APPROX(x, v1(r));
49   v1[r] = x;
50   VERIFY_IS_APPROX(x, v1[r]);
51 
52   // test fetching with various index types.
53   Index r1 = internal::random<Index>(0, numext::mini(Index(127),rows-1));
54   x = v1(static_cast<char>(r1));
55   x = v1(static_cast<signed char>(r1));
56   x = v1(static_cast<unsigned char>(r1));
57   x = v1(static_cast<signed short>(r1));
58   x = v1(static_cast<unsigned short>(r1));
59   x = v1(static_cast<signed int>(r1));
60   x = v1(static_cast<unsigned int>(r1));
61   x = v1(static_cast<signed long>(r1));
62   x = v1(static_cast<unsigned long>(r1));
63 #if EIGEN_HAS_CXX11
64   x = v1(static_cast<long long int>(r1));
65   x = v1(static_cast<unsigned long long int>(r1));
66 #endif
67 
68   VERIFY_IS_APPROX(               v1,    v1);
69   VERIFY_IS_NOT_APPROX(           v1,    2*v1);
70   VERIFY_IS_MUCH_SMALLER_THAN(    vzero, v1);
71   VERIFY_IS_MUCH_SMALLER_THAN(  vzero, v1.squaredNorm());
72   VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1,    v1);
73   VERIFY_IS_APPROX(               vzero, v1-v1);
74   VERIFY_IS_APPROX(               m1,    m1);
75   VERIFY_IS_NOT_APPROX(           m1,    2*m1);
76   VERIFY_IS_MUCH_SMALLER_THAN(    mzero, m1);
77   VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1,    m1);
78   VERIFY_IS_APPROX(               mzero, m1-m1);
79 
80   // always test operator() on each read-only expression class,
81   // in order to check const-qualifiers.
82   // indeed, if an expression class (here Zero) is meant to be read-only,
83   // hence has no _write() method, the corresponding MatrixBase method (here zero())
84   // should return a const-qualified object so that it is the const-qualified
85   // operator() that gets called, which in turn calls _read().
86   VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
87 
88   // now test copying a row-vector into a (column-)vector and conversely.
89   square.col(r) = square.row(r).eval();
90   Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
91   Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
92   rv = square.row(r);
93   cv = square.col(r);
94 
95   VERIFY_IS_APPROX(rv, cv.transpose());
96 
97   if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
98   {
99     VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
100   }
101 
102   if(cols!=1 && rows!=1)
103   {
104     VERIFY_RAISES_ASSERT(m1[0]);
105     VERIFY_RAISES_ASSERT((m1+m1)[0]);
106   }
107 
108   VERIFY_IS_APPROX(m3 = m1,m1);
109   MatrixType m4;
110   VERIFY_IS_APPROX(m4 = m1,m1);
111 
112   m3.real() = m1.real();
113   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
114   VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
115 
116   // check == / != operators
117   VERIFY(m1==m1);
118   VERIFY(m1!=m2);
119   VERIFY(!(m1==m2));
120   VERIFY(!(m1!=m1));
121   m1 = m2;
122   VERIFY(m1==m2);
123   VERIFY(!(m1!=m2));
124 
125   // check automatic transposition
126   sm2.setZero();
127   for(Index i=0;i<rows;++i)
128     sm2.col(i) = sm1.row(i);
129   VERIFY_IS_APPROX(sm2,sm1.transpose());
130 
131   sm2.setZero();
132   for(Index i=0;i<rows;++i)
133     sm2.col(i).noalias() = sm1.row(i);
134   VERIFY_IS_APPROX(sm2,sm1.transpose());
135 
136   sm2.setZero();
137   for(Index i=0;i<rows;++i)
138     sm2.col(i).noalias() += sm1.row(i);
139   VERIFY_IS_APPROX(sm2,sm1.transpose());
140 
141   sm2.setZero();
142   for(Index i=0;i<rows;++i)
143     sm2.col(i).noalias() -= sm1.row(i);
144   VERIFY_IS_APPROX(sm2,-sm1.transpose());
145 
146   // check ternary usage
147   {
148     bool b = internal::random<int>(0,10)>5;
149     m3 = b ? m1 : m2;
150     if(b) VERIFY_IS_APPROX(m3,m1);
151     else  VERIFY_IS_APPROX(m3,m2);
152     m3 = b ? -m1 : m2;
153     if(b) VERIFY_IS_APPROX(m3,-m1);
154     else  VERIFY_IS_APPROX(m3,m2);
155     m3 = b ? m1 : -m2;
156     if(b) VERIFY_IS_APPROX(m3,m1);
157     else  VERIFY_IS_APPROX(m3,-m2);
158   }
159 }
160 
basicStuffComplex(const MatrixType & m)161 template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
162 {
163   typedef typename MatrixType::Scalar Scalar;
164   typedef typename NumTraits<Scalar>::Real RealScalar;
165   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
166 
167   Index rows = m.rows();
168   Index cols = m.cols();
169 
170   Scalar s1 = internal::random<Scalar>(),
171          s2 = internal::random<Scalar>();
172 
173   VERIFY(numext::real(s1)==numext::real_ref(s1));
174   VERIFY(numext::imag(s1)==numext::imag_ref(s1));
175   numext::real_ref(s1) = numext::real(s2);
176   numext::imag_ref(s1) = numext::imag(s2);
177   VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
178   // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
179 
180   RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
181                  rm2 = RealMatrixType::Random(rows,cols);
182   MatrixType cm(rows,cols);
183   cm.real() = rm1;
184   cm.imag() = rm2;
185   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
186   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
187   rm1.setZero();
188   rm2.setZero();
189   rm1 = cm.real();
190   rm2 = cm.imag();
191   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
192   VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
193   cm.real().setZero();
194   VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
195   VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
196 }
197 
198 template<typename SrcScalar, typename TgtScalar>
199 struct casting_test {
runcasting_test200   static void run() {
201     Matrix<SrcScalar,4,4> m;
202     for (int i=0; i<m.rows(); ++i) {
203       for (int j=0; j<m.cols(); ++j) {
204         m(i, j) = internal::random_without_cast_overflow<SrcScalar,TgtScalar>::value();
205       }
206     }
207     Matrix<TgtScalar,4,4> n = m.template cast<TgtScalar>();
208     for (int i=0; i<m.rows(); ++i) {
209       for (int j=0; j<m.cols(); ++j) {
210         VERIFY_IS_APPROX(n(i, j), (internal::cast<SrcScalar,TgtScalar>(m(i, j))));
211       }
212     }
213   }
214 };
215 
216 template<typename SrcScalar, typename EnableIf = void>
217 struct casting_test_runner {
runcasting_test_runner218   static void run() {
219     casting_test<SrcScalar, bool>::run();
220     casting_test<SrcScalar, int8_t>::run();
221     casting_test<SrcScalar, uint8_t>::run();
222     casting_test<SrcScalar, int16_t>::run();
223     casting_test<SrcScalar, uint16_t>::run();
224     casting_test<SrcScalar, int32_t>::run();
225     casting_test<SrcScalar, uint32_t>::run();
226 #if EIGEN_HAS_CXX11
227     casting_test<SrcScalar, int64_t>::run();
228     casting_test<SrcScalar, uint64_t>::run();
229 #endif
230     casting_test<SrcScalar, half>::run();
231     casting_test<SrcScalar, bfloat16>::run();
232     casting_test<SrcScalar, float>::run();
233     casting_test<SrcScalar, double>::run();
234     casting_test<SrcScalar, std::complex<float> >::run();
235     casting_test<SrcScalar, std::complex<double> >::run();
236   }
237 };
238 
239 template<typename SrcScalar>
240 struct casting_test_runner<SrcScalar, typename internal::enable_if<(NumTraits<SrcScalar>::IsComplex)>::type>
241 {
runcasting_test_runner242   static void run() {
243     // Only a few casts from std::complex<T> are defined.
244     casting_test<SrcScalar, half>::run();
245     casting_test<SrcScalar, bfloat16>::run();
246     casting_test<SrcScalar, std::complex<float> >::run();
247     casting_test<SrcScalar, std::complex<double> >::run();
248   }
249 };
250 
casting_all()251 void casting_all() {
252   casting_test_runner<bool>::run();
253   casting_test_runner<int8_t>::run();
254   casting_test_runner<uint8_t>::run();
255   casting_test_runner<int16_t>::run();
256   casting_test_runner<uint16_t>::run();
257   casting_test_runner<int32_t>::run();
258   casting_test_runner<uint32_t>::run();
259 #if EIGEN_HAS_CXX11
260   casting_test_runner<int64_t>::run();
261   casting_test_runner<uint64_t>::run();
262 #endif
263   casting_test_runner<half>::run();
264   casting_test_runner<bfloat16>::run();
265   casting_test_runner<float>::run();
266   casting_test_runner<double>::run();
267   casting_test_runner<std::complex<float> >::run();
268   casting_test_runner<std::complex<double> >::run();
269 }
270 
271 template <typename Scalar>
fixedSizeMatrixConstruction()272 void fixedSizeMatrixConstruction()
273 {
274   Scalar raw[4];
275   for(int k=0; k<4; ++k)
276     raw[k] = internal::random<Scalar>();
277 
278   {
279     Matrix<Scalar,4,1> m(raw);
280     Array<Scalar,4,1> a(raw);
281     for(int k=0; k<4; ++k) VERIFY(m(k) == raw[k]);
282     for(int k=0; k<4; ++k) VERIFY(a(k) == raw[k]);
283     VERIFY_IS_EQUAL(m,(Matrix<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3])));
284     VERIFY((a==(Array<Scalar,4,1>(raw[0],raw[1],raw[2],raw[3]))).all());
285   }
286   {
287     Matrix<Scalar,3,1> m(raw);
288     Array<Scalar,3,1> a(raw);
289     for(int k=0; k<3; ++k) VERIFY(m(k) == raw[k]);
290     for(int k=0; k<3; ++k) VERIFY(a(k) == raw[k]);
291     VERIFY_IS_EQUAL(m,(Matrix<Scalar,3,1>(raw[0],raw[1],raw[2])));
292     VERIFY((a==Array<Scalar,3,1>(raw[0],raw[1],raw[2])).all());
293   }
294   {
295     Matrix<Scalar,2,1> m(raw), m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
296     Array<Scalar,2,1> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
297     for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
298     for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
299     VERIFY_IS_EQUAL(m,(Matrix<Scalar,2,1>(raw[0],raw[1])));
300     VERIFY((a==Array<Scalar,2,1>(raw[0],raw[1])).all());
301     for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
302     for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
303   }
304   {
305     Matrix<Scalar,1,2> m(raw),
306                        m2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) ),
307                        m3( (int(raw[0])), (int(raw[1])) ),
308                        m4( (float(raw[0])), (float(raw[1])) );
309     Array<Scalar,1,2> a(raw),  a2( (DenseIndex(raw[0])), (DenseIndex(raw[1])) );
310     for(int k=0; k<2; ++k) VERIFY(m(k) == raw[k]);
311     for(int k=0; k<2; ++k) VERIFY(a(k) == raw[k]);
312     VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,2>(raw[0],raw[1])));
313     VERIFY((a==Array<Scalar,1,2>(raw[0],raw[1])).all());
314     for(int k=0; k<2; ++k) VERIFY(m2(k) == DenseIndex(raw[k]));
315     for(int k=0; k<2; ++k) VERIFY(a2(k) == DenseIndex(raw[k]));
316     for(int k=0; k<2; ++k) VERIFY(m3(k) == int(raw[k]));
317     for(int k=0; k<2; ++k) VERIFY((m4(k)) == Scalar(float(raw[k])));
318   }
319   {
320     Matrix<Scalar,1,1> m(raw), m1(raw[0]), m2( (DenseIndex(raw[0])) ), m3( (int(raw[0])) );
321     Array<Scalar,1,1> a(raw), a1(raw[0]), a2( (DenseIndex(raw[0])) );
322     VERIFY(m(0) == raw[0]);
323     VERIFY(a(0) == raw[0]);
324     VERIFY(m1(0) == raw[0]);
325     VERIFY(a1(0) == raw[0]);
326     VERIFY(m2(0) == DenseIndex(raw[0]));
327     VERIFY(a2(0) == DenseIndex(raw[0]));
328     VERIFY(m3(0) == int(raw[0]));
329     VERIFY_IS_EQUAL(m,(Matrix<Scalar,1,1>(raw[0])));
330     VERIFY((a==Array<Scalar,1,1>(raw[0])).all());
331   }
332 }
333 
EIGEN_DECLARE_TEST(basicstuff)334 EIGEN_DECLARE_TEST(basicstuff)
335 {
336   for(int i = 0; i < g_repeat; i++) {
337     CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
338     CALL_SUBTEST_2( basicStuff(Matrix4d()) );
339     CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
340     CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
341     CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
342     CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
343     CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
344     CALL_SUBTEST_8( casting_all() );
345 
346     CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
347     CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
348   }
349 
350   CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
351   CALL_SUBTEST_1(fixedSizeMatrixConstruction<float>());
352   CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
353   CALL_SUBTEST_1(fixedSizeMatrixConstruction<int>());
354   CALL_SUBTEST_1(fixedSizeMatrixConstruction<long int>());
355   CALL_SUBTEST_1(fixedSizeMatrixConstruction<std::ptrdiff_t>());
356 }
357