xref: /aosp_15_r20/external/eigen/lapack/svd.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2014 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #include "lapack_common.h"
11*bf2c3715SXin Li #include <Eigen/SVD>
12*bf2c3715SXin Li 
13*bf2c3715SXin Li // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
14*bf2c3715SXin Li EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
15*bf2c3715SXin Li                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
16*bf2c3715SXin Li {
17*bf2c3715SXin Li   // TODO exploit the work buffer
18*bf2c3715SXin Li   bool query_size = *lwork==-1;
19*bf2c3715SXin Li   int diag_size = (std::min)(*m,*n);
20*bf2c3715SXin Li 
21*bf2c3715SXin Li   *info = 0;
22*bf2c3715SXin Li         if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N')  *info = -1;
23*bf2c3715SXin Li   else  if(*m<0)                                                  *info = -2;
24*bf2c3715SXin Li   else  if(*n<0)                                                  *info = -3;
25*bf2c3715SXin Li   else  if(*lda<std::max(1,*m))                                   *info = -5;
26*bf2c3715SXin Li   else  if(*lda<std::max(1,*m))                                   *info = -8;
27*bf2c3715SXin Li   else  if(*ldu <1 || (*jobz=='A' && *ldu <*m)
28*bf2c3715SXin Li                    || (*jobz=='O' && *m<*n && *ldu<*m))           *info = -8;
29*bf2c3715SXin Li   else  if(*ldvt<1 || (*jobz=='A' && *ldvt<*n)
30*bf2c3715SXin Li                    || (*jobz=='S' && *ldvt<diag_size)
31*bf2c3715SXin Li                    || (*jobz=='O' && *m>=*n && *ldvt<*n))         *info = -10;
32*bf2c3715SXin Li 
33*bf2c3715SXin Li   if(*info!=0)
34*bf2c3715SXin Li   {
35*bf2c3715SXin Li     int e = -*info;
36*bf2c3715SXin Li     return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6);
37*bf2c3715SXin Li   }
38*bf2c3715SXin Li 
39*bf2c3715SXin Li   if(query_size)
40*bf2c3715SXin Li   {
41*bf2c3715SXin Li     *lwork = 0;
42*bf2c3715SXin Li     return 0;
43*bf2c3715SXin Li   }
44*bf2c3715SXin Li 
45*bf2c3715SXin Li   if(*n==0 || *m==0)
46*bf2c3715SXin Li     return 0;
47*bf2c3715SXin Li 
48*bf2c3715SXin Li   PlainMatrixType mat(*m,*n);
49*bf2c3715SXin Li   mat = matrix(a,*m,*n,*lda);
50*bf2c3715SXin Li 
51*bf2c3715SXin Li   int option = *jobz=='A' ? ComputeFullU|ComputeFullV
52*bf2c3715SXin Li              : *jobz=='S' ? ComputeThinU|ComputeThinV
53*bf2c3715SXin Li              : *jobz=='O' ? ComputeThinU|ComputeThinV
54*bf2c3715SXin Li              : 0;
55*bf2c3715SXin Li 
56*bf2c3715SXin Li   BDCSVD<PlainMatrixType> svd(mat,option);
57*bf2c3715SXin Li 
58*bf2c3715SXin Li   make_vector(s,diag_size) = svd.singularValues().head(diag_size);
59*bf2c3715SXin Li 
60*bf2c3715SXin Li   if(*jobz=='A')
61*bf2c3715SXin Li   {
62*bf2c3715SXin Li     matrix(u,*m,*m,*ldu)   = svd.matrixU();
63*bf2c3715SXin Li     matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
64*bf2c3715SXin Li   }
65*bf2c3715SXin Li   else if(*jobz=='S')
66*bf2c3715SXin Li   {
67*bf2c3715SXin Li     matrix(u,*m,diag_size,*ldu)   = svd.matrixU();
68*bf2c3715SXin Li     matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
69*bf2c3715SXin Li   }
70*bf2c3715SXin Li   else if(*jobz=='O' && *m>=*n)
71*bf2c3715SXin Li   {
72*bf2c3715SXin Li     matrix(a,*m,*n,*lda)   = svd.matrixU();
73*bf2c3715SXin Li     matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
74*bf2c3715SXin Li   }
75*bf2c3715SXin Li   else if(*jobz=='O')
76*bf2c3715SXin Li   {
77*bf2c3715SXin Li     matrix(u,*m,*m,*ldu)        = svd.matrixU();
78*bf2c3715SXin Li     matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
79*bf2c3715SXin Li   }
80*bf2c3715SXin Li 
81*bf2c3715SXin Li   return 0;
82*bf2c3715SXin Li }
83*bf2c3715SXin Li 
84*bf2c3715SXin Li // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
85*bf2c3715SXin Li EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
86*bf2c3715SXin Li                          EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
87*bf2c3715SXin Li {
88*bf2c3715SXin Li   // TODO exploit the work buffer
89*bf2c3715SXin Li   bool query_size = *lwork==-1;
90*bf2c3715SXin Li   int diag_size = (std::min)(*m,*n);
91*bf2c3715SXin Li 
92*bf2c3715SXin Li   *info = 0;
93*bf2c3715SXin Li         if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1;
94*bf2c3715SXin Li   else  if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N')
95*bf2c3715SXin Li            || (*jobu=='O' && *jobv=='O'))                         *info = -2;
96*bf2c3715SXin Li   else  if(*m<0)                                                  *info = -3;
97*bf2c3715SXin Li   else  if(*n<0)                                                  *info = -4;
98*bf2c3715SXin Li   else  if(*lda<std::max(1,*m))                                   *info = -6;
99*bf2c3715SXin Li   else  if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m))    *info = -9;
100*bf2c3715SXin Li   else  if(*ldvt<1 || (*jobv=='A' && *ldvt<*n)
101*bf2c3715SXin Li                    || (*jobv=='S' && *ldvt<diag_size))            *info = -11;
102*bf2c3715SXin Li 
103*bf2c3715SXin Li   if(*info!=0)
104*bf2c3715SXin Li   {
105*bf2c3715SXin Li     int e = -*info;
106*bf2c3715SXin Li     return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6);
107*bf2c3715SXin Li   }
108*bf2c3715SXin Li 
109*bf2c3715SXin Li   if(query_size)
110*bf2c3715SXin Li   {
111*bf2c3715SXin Li     *lwork = 0;
112*bf2c3715SXin Li     return 0;
113*bf2c3715SXin Li   }
114*bf2c3715SXin Li 
115*bf2c3715SXin Li   if(*n==0 || *m==0)
116*bf2c3715SXin Li     return 0;
117*bf2c3715SXin Li 
118*bf2c3715SXin Li   PlainMatrixType mat(*m,*n);
119*bf2c3715SXin Li   mat = matrix(a,*m,*n,*lda);
120*bf2c3715SXin Li 
121*bf2c3715SXin Li   int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
122*bf2c3715SXin Li              | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
123*bf2c3715SXin Li 
124*bf2c3715SXin Li   JacobiSVD<PlainMatrixType> svd(mat,option);
125*bf2c3715SXin Li 
126*bf2c3715SXin Li   make_vector(s,diag_size) = svd.singularValues().head(diag_size);
127*bf2c3715SXin Li   {
128*bf2c3715SXin Li         if(*jobu=='A') matrix(u,*m,*m,*ldu)           = svd.matrixU();
129*bf2c3715SXin Li   else  if(*jobu=='S') matrix(u,*m,diag_size,*ldu)    = svd.matrixU();
130*bf2c3715SXin Li   else  if(*jobu=='O') matrix(a,*m,diag_size,*lda)    = svd.matrixU();
131*bf2c3715SXin Li   }
132*bf2c3715SXin Li   {
133*bf2c3715SXin Li         if(*jobv=='A') matrix(vt,*n,*n,*ldvt)         = svd.matrixV().adjoint();
134*bf2c3715SXin Li   else  if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt)  = svd.matrixV().adjoint();
135*bf2c3715SXin Li   else  if(*jobv=='O') matrix(a,diag_size,*n,*lda)    = svd.matrixV().adjoint();
136*bf2c3715SXin Li   }
137*bf2c3715SXin Li   return 0;
138*bf2c3715SXin Li }
139