1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library 2*bf2c3715SXin Li // for linear algebra. 3*bf2c3715SXin Li // 4*bf2c3715SXin Li // Copyright (C) 2014 Gael Guennebaud <[email protected]> 5*bf2c3715SXin Li // 6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla 7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed 8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9*bf2c3715SXin Li 10*bf2c3715SXin Li #include "lapack_common.h" 11*bf2c3715SXin Li #include <Eigen/SVD> 12*bf2c3715SXin Li 13*bf2c3715SXin Li // computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer 14*bf2c3715SXin Li EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, 15*bf2c3715SXin Li EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info)) 16*bf2c3715SXin Li { 17*bf2c3715SXin Li // TODO exploit the work buffer 18*bf2c3715SXin Li bool query_size = *lwork==-1; 19*bf2c3715SXin Li int diag_size = (std::min)(*m,*n); 20*bf2c3715SXin Li 21*bf2c3715SXin Li *info = 0; 22*bf2c3715SXin Li if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1; 23*bf2c3715SXin Li else if(*m<0) *info = -2; 24*bf2c3715SXin Li else if(*n<0) *info = -3; 25*bf2c3715SXin Li else if(*lda<std::max(1,*m)) *info = -5; 26*bf2c3715SXin Li else if(*lda<std::max(1,*m)) *info = -8; 27*bf2c3715SXin Li else if(*ldu <1 || (*jobz=='A' && *ldu <*m) 28*bf2c3715SXin Li || (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8; 29*bf2c3715SXin Li else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n) 30*bf2c3715SXin Li || (*jobz=='S' && *ldvt<diag_size) 31*bf2c3715SXin Li || (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10; 32*bf2c3715SXin Li 33*bf2c3715SXin Li if(*info!=0) 34*bf2c3715SXin Li { 35*bf2c3715SXin Li int e = -*info; 36*bf2c3715SXin Li return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6); 37*bf2c3715SXin Li } 38*bf2c3715SXin Li 39*bf2c3715SXin Li if(query_size) 40*bf2c3715SXin Li { 41*bf2c3715SXin Li *lwork = 0; 42*bf2c3715SXin Li return 0; 43*bf2c3715SXin Li } 44*bf2c3715SXin Li 45*bf2c3715SXin Li if(*n==0 || *m==0) 46*bf2c3715SXin Li return 0; 47*bf2c3715SXin Li 48*bf2c3715SXin Li PlainMatrixType mat(*m,*n); 49*bf2c3715SXin Li mat = matrix(a,*m,*n,*lda); 50*bf2c3715SXin Li 51*bf2c3715SXin Li int option = *jobz=='A' ? ComputeFullU|ComputeFullV 52*bf2c3715SXin Li : *jobz=='S' ? ComputeThinU|ComputeThinV 53*bf2c3715SXin Li : *jobz=='O' ? ComputeThinU|ComputeThinV 54*bf2c3715SXin Li : 0; 55*bf2c3715SXin Li 56*bf2c3715SXin Li BDCSVD<PlainMatrixType> svd(mat,option); 57*bf2c3715SXin Li 58*bf2c3715SXin Li make_vector(s,diag_size) = svd.singularValues().head(diag_size); 59*bf2c3715SXin Li 60*bf2c3715SXin Li if(*jobz=='A') 61*bf2c3715SXin Li { 62*bf2c3715SXin Li matrix(u,*m,*m,*ldu) = svd.matrixU(); 63*bf2c3715SXin Li matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); 64*bf2c3715SXin Li } 65*bf2c3715SXin Li else if(*jobz=='S') 66*bf2c3715SXin Li { 67*bf2c3715SXin Li matrix(u,*m,diag_size,*ldu) = svd.matrixU(); 68*bf2c3715SXin Li matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); 69*bf2c3715SXin Li } 70*bf2c3715SXin Li else if(*jobz=='O' && *m>=*n) 71*bf2c3715SXin Li { 72*bf2c3715SXin Li matrix(a,*m,*n,*lda) = svd.matrixU(); 73*bf2c3715SXin Li matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); 74*bf2c3715SXin Li } 75*bf2c3715SXin Li else if(*jobz=='O') 76*bf2c3715SXin Li { 77*bf2c3715SXin Li matrix(u,*m,*m,*ldu) = svd.matrixU(); 78*bf2c3715SXin Li matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); 79*bf2c3715SXin Li } 80*bf2c3715SXin Li 81*bf2c3715SXin Li return 0; 82*bf2c3715SXin Li } 83*bf2c3715SXin Li 84*bf2c3715SXin Li // computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm 85*bf2c3715SXin Li EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork, 86*bf2c3715SXin Li EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info)) 87*bf2c3715SXin Li { 88*bf2c3715SXin Li // TODO exploit the work buffer 89*bf2c3715SXin Li bool query_size = *lwork==-1; 90*bf2c3715SXin Li int diag_size = (std::min)(*m,*n); 91*bf2c3715SXin Li 92*bf2c3715SXin Li *info = 0; 93*bf2c3715SXin Li if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1; 94*bf2c3715SXin Li else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N') 95*bf2c3715SXin Li || (*jobu=='O' && *jobv=='O')) *info = -2; 96*bf2c3715SXin Li else if(*m<0) *info = -3; 97*bf2c3715SXin Li else if(*n<0) *info = -4; 98*bf2c3715SXin Li else if(*lda<std::max(1,*m)) *info = -6; 99*bf2c3715SXin Li else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9; 100*bf2c3715SXin Li else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n) 101*bf2c3715SXin Li || (*jobv=='S' && *ldvt<diag_size)) *info = -11; 102*bf2c3715SXin Li 103*bf2c3715SXin Li if(*info!=0) 104*bf2c3715SXin Li { 105*bf2c3715SXin Li int e = -*info; 106*bf2c3715SXin Li return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6); 107*bf2c3715SXin Li } 108*bf2c3715SXin Li 109*bf2c3715SXin Li if(query_size) 110*bf2c3715SXin Li { 111*bf2c3715SXin Li *lwork = 0; 112*bf2c3715SXin Li return 0; 113*bf2c3715SXin Li } 114*bf2c3715SXin Li 115*bf2c3715SXin Li if(*n==0 || *m==0) 116*bf2c3715SXin Li return 0; 117*bf2c3715SXin Li 118*bf2c3715SXin Li PlainMatrixType mat(*m,*n); 119*bf2c3715SXin Li mat = matrix(a,*m,*n,*lda); 120*bf2c3715SXin Li 121*bf2c3715SXin Li int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0) 122*bf2c3715SXin Li | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0); 123*bf2c3715SXin Li 124*bf2c3715SXin Li JacobiSVD<PlainMatrixType> svd(mat,option); 125*bf2c3715SXin Li 126*bf2c3715SXin Li make_vector(s,diag_size) = svd.singularValues().head(diag_size); 127*bf2c3715SXin Li { 128*bf2c3715SXin Li if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU(); 129*bf2c3715SXin Li else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU(); 130*bf2c3715SXin Li else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU(); 131*bf2c3715SXin Li } 132*bf2c3715SXin Li { 133*bf2c3715SXin Li if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint(); 134*bf2c3715SXin Li else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint(); 135*bf2c3715SXin Li else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint(); 136*bf2c3715SXin Li } 137*bf2c3715SXin Li return 0; 138*bf2c3715SXin Li } 139