1*bf2c3715SXin Li /* zhpmv.f -- translated by f2c (version 20100827).
2*bf2c3715SXin Li You must link the resulting object file with libf2c:
3*bf2c3715SXin Li on Microsoft Windows system, link with libf2c.lib;
4*bf2c3715SXin Li on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5*bf2c3715SXin Li or, if you install libf2c.a in a standard place, with -lf2c -lm
6*bf2c3715SXin Li -- in that order, at the end of the command line, as in
7*bf2c3715SXin Li cc *.o -lf2c -lm
8*bf2c3715SXin Li Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9*bf2c3715SXin Li
10*bf2c3715SXin Li http://www.netlib.org/f2c/libf2c.zip
11*bf2c3715SXin Li */
12*bf2c3715SXin Li
13*bf2c3715SXin Li #include "datatypes.h"
14*bf2c3715SXin Li
zhpmv_(char * uplo,integer * n,doublecomplex * alpha,doublecomplex * ap,doublecomplex * x,integer * incx,doublecomplex * beta,doublecomplex * y,integer * incy,ftnlen uplo_len)15*bf2c3715SXin Li /* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
16*bf2c3715SXin Li doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
17*bf2c3715SXin Li beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li /* System generated locals */
20*bf2c3715SXin Li integer i__1, i__2, i__3, i__4, i__5;
21*bf2c3715SXin Li doublereal d__1;
22*bf2c3715SXin Li doublecomplex z__1, z__2, z__3, z__4;
23*bf2c3715SXin Li
24*bf2c3715SXin Li /* Builtin functions */
25*bf2c3715SXin Li void d_cnjg(doublecomplex *, doublecomplex *);
26*bf2c3715SXin Li
27*bf2c3715SXin Li /* Local variables */
28*bf2c3715SXin Li integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
29*bf2c3715SXin Li doublecomplex temp1, temp2;
30*bf2c3715SXin Li extern logical lsame_(char *, char *, ftnlen, ftnlen);
31*bf2c3715SXin Li extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
32*bf2c3715SXin Li
33*bf2c3715SXin Li /* .. Scalar Arguments .. */
34*bf2c3715SXin Li /* .. */
35*bf2c3715SXin Li /* .. Array Arguments .. */
36*bf2c3715SXin Li /* .. */
37*bf2c3715SXin Li
38*bf2c3715SXin Li /* Purpose */
39*bf2c3715SXin Li /* ======= */
40*bf2c3715SXin Li
41*bf2c3715SXin Li /* ZHPMV performs the matrix-vector operation */
42*bf2c3715SXin Li
43*bf2c3715SXin Li /* y := alpha*A*x + beta*y, */
44*bf2c3715SXin Li
45*bf2c3715SXin Li /* where alpha and beta are scalars, x and y are n element vectors and */
46*bf2c3715SXin Li /* A is an n by n hermitian matrix, supplied in packed form. */
47*bf2c3715SXin Li
48*bf2c3715SXin Li /* Arguments */
49*bf2c3715SXin Li /* ========== */
50*bf2c3715SXin Li
51*bf2c3715SXin Li /* UPLO - CHARACTER*1. */
52*bf2c3715SXin Li /* On entry, UPLO specifies whether the upper or lower */
53*bf2c3715SXin Li /* triangular part of the matrix A is supplied in the packed */
54*bf2c3715SXin Li /* array AP as follows: */
55*bf2c3715SXin Li
56*bf2c3715SXin Li /* UPLO = 'U' or 'u' The upper triangular part of A is */
57*bf2c3715SXin Li /* supplied in AP. */
58*bf2c3715SXin Li
59*bf2c3715SXin Li /* UPLO = 'L' or 'l' The lower triangular part of A is */
60*bf2c3715SXin Li /* supplied in AP. */
61*bf2c3715SXin Li
62*bf2c3715SXin Li /* Unchanged on exit. */
63*bf2c3715SXin Li
64*bf2c3715SXin Li /* N - INTEGER. */
65*bf2c3715SXin Li /* On entry, N specifies the order of the matrix A. */
66*bf2c3715SXin Li /* N must be at least zero. */
67*bf2c3715SXin Li /* Unchanged on exit. */
68*bf2c3715SXin Li
69*bf2c3715SXin Li /* ALPHA - COMPLEX*16 . */
70*bf2c3715SXin Li /* On entry, ALPHA specifies the scalar alpha. */
71*bf2c3715SXin Li /* Unchanged on exit. */
72*bf2c3715SXin Li
73*bf2c3715SXin Li /* AP - COMPLEX*16 array of DIMENSION at least */
74*bf2c3715SXin Li /* ( ( n*( n + 1 ) )/2 ). */
75*bf2c3715SXin Li /* Before entry with UPLO = 'U' or 'u', the array AP must */
76*bf2c3715SXin Li /* contain the upper triangular part of the hermitian matrix */
77*bf2c3715SXin Li /* packed sequentially, column by column, so that AP( 1 ) */
78*bf2c3715SXin Li /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
79*bf2c3715SXin Li /* and a( 2, 2 ) respectively, and so on. */
80*bf2c3715SXin Li /* Before entry with UPLO = 'L' or 'l', the array AP must */
81*bf2c3715SXin Li /* contain the lower triangular part of the hermitian matrix */
82*bf2c3715SXin Li /* packed sequentially, column by column, so that AP( 1 ) */
83*bf2c3715SXin Li /* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
84*bf2c3715SXin Li /* and a( 3, 1 ) respectively, and so on. */
85*bf2c3715SXin Li /* Note that the imaginary parts of the diagonal elements need */
86*bf2c3715SXin Li /* not be set and are assumed to be zero. */
87*bf2c3715SXin Li /* Unchanged on exit. */
88*bf2c3715SXin Li
89*bf2c3715SXin Li /* X - COMPLEX*16 array of dimension at least */
90*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCX ) ). */
91*bf2c3715SXin Li /* Before entry, the incremented array X must contain the n */
92*bf2c3715SXin Li /* element vector x. */
93*bf2c3715SXin Li /* Unchanged on exit. */
94*bf2c3715SXin Li
95*bf2c3715SXin Li /* INCX - INTEGER. */
96*bf2c3715SXin Li /* On entry, INCX specifies the increment for the elements of */
97*bf2c3715SXin Li /* X. INCX must not be zero. */
98*bf2c3715SXin Li /* Unchanged on exit. */
99*bf2c3715SXin Li
100*bf2c3715SXin Li /* BETA - COMPLEX*16 . */
101*bf2c3715SXin Li /* On entry, BETA specifies the scalar beta. When BETA is */
102*bf2c3715SXin Li /* supplied as zero then Y need not be set on input. */
103*bf2c3715SXin Li /* Unchanged on exit. */
104*bf2c3715SXin Li
105*bf2c3715SXin Li /* Y - COMPLEX*16 array of dimension at least */
106*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCY ) ). */
107*bf2c3715SXin Li /* Before entry, the incremented array Y must contain the n */
108*bf2c3715SXin Li /* element vector y. On exit, Y is overwritten by the updated */
109*bf2c3715SXin Li /* vector y. */
110*bf2c3715SXin Li
111*bf2c3715SXin Li /* INCY - INTEGER. */
112*bf2c3715SXin Li /* On entry, INCY specifies the increment for the elements of */
113*bf2c3715SXin Li /* Y. INCY must not be zero. */
114*bf2c3715SXin Li /* Unchanged on exit. */
115*bf2c3715SXin Li
116*bf2c3715SXin Li /* Further Details */
117*bf2c3715SXin Li /* =============== */
118*bf2c3715SXin Li
119*bf2c3715SXin Li /* Level 2 Blas routine. */
120*bf2c3715SXin Li
121*bf2c3715SXin Li /* -- Written on 22-October-1986. */
122*bf2c3715SXin Li /* Jack Dongarra, Argonne National Lab. */
123*bf2c3715SXin Li /* Jeremy Du Croz, Nag Central Office. */
124*bf2c3715SXin Li /* Sven Hammarling, Nag Central Office. */
125*bf2c3715SXin Li /* Richard Hanson, Sandia National Labs. */
126*bf2c3715SXin Li
127*bf2c3715SXin Li /* ===================================================================== */
128*bf2c3715SXin Li
129*bf2c3715SXin Li /* .. Parameters .. */
130*bf2c3715SXin Li /* .. */
131*bf2c3715SXin Li /* .. Local Scalars .. */
132*bf2c3715SXin Li /* .. */
133*bf2c3715SXin Li /* .. External Functions .. */
134*bf2c3715SXin Li /* .. */
135*bf2c3715SXin Li /* .. External Subroutines .. */
136*bf2c3715SXin Li /* .. */
137*bf2c3715SXin Li /* .. Intrinsic Functions .. */
138*bf2c3715SXin Li /* .. */
139*bf2c3715SXin Li
140*bf2c3715SXin Li /* Test the input parameters. */
141*bf2c3715SXin Li
142*bf2c3715SXin Li /* Parameter adjustments */
143*bf2c3715SXin Li --y;
144*bf2c3715SXin Li --x;
145*bf2c3715SXin Li --ap;
146*bf2c3715SXin Li
147*bf2c3715SXin Li /* Function Body */
148*bf2c3715SXin Li info = 0;
149*bf2c3715SXin Li if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
150*bf2c3715SXin Li ftnlen)1, (ftnlen)1)) {
151*bf2c3715SXin Li info = 1;
152*bf2c3715SXin Li } else if (*n < 0) {
153*bf2c3715SXin Li info = 2;
154*bf2c3715SXin Li } else if (*incx == 0) {
155*bf2c3715SXin Li info = 6;
156*bf2c3715SXin Li } else if (*incy == 0) {
157*bf2c3715SXin Li info = 9;
158*bf2c3715SXin Li }
159*bf2c3715SXin Li if (info != 0) {
160*bf2c3715SXin Li xerbla_("ZHPMV ", &info, (ftnlen)6);
161*bf2c3715SXin Li return 0;
162*bf2c3715SXin Li }
163*bf2c3715SXin Li
164*bf2c3715SXin Li /* Quick return if possible. */
165*bf2c3715SXin Li
166*bf2c3715SXin Li if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
167*bf2c3715SXin Li beta->i == 0.))) {
168*bf2c3715SXin Li return 0;
169*bf2c3715SXin Li }
170*bf2c3715SXin Li
171*bf2c3715SXin Li /* Set up the start points in X and Y. */
172*bf2c3715SXin Li
173*bf2c3715SXin Li if (*incx > 0) {
174*bf2c3715SXin Li kx = 1;
175*bf2c3715SXin Li } else {
176*bf2c3715SXin Li kx = 1 - (*n - 1) * *incx;
177*bf2c3715SXin Li }
178*bf2c3715SXin Li if (*incy > 0) {
179*bf2c3715SXin Li ky = 1;
180*bf2c3715SXin Li } else {
181*bf2c3715SXin Li ky = 1 - (*n - 1) * *incy;
182*bf2c3715SXin Li }
183*bf2c3715SXin Li
184*bf2c3715SXin Li /* Start the operations. In this version the elements of the array AP */
185*bf2c3715SXin Li /* are accessed sequentially with one pass through AP. */
186*bf2c3715SXin Li
187*bf2c3715SXin Li /* First form y := beta*y. */
188*bf2c3715SXin Li
189*bf2c3715SXin Li if (beta->r != 1. || beta->i != 0.) {
190*bf2c3715SXin Li if (*incy == 1) {
191*bf2c3715SXin Li if (beta->r == 0. && beta->i == 0.) {
192*bf2c3715SXin Li i__1 = *n;
193*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
194*bf2c3715SXin Li i__2 = i__;
195*bf2c3715SXin Li y[i__2].r = 0., y[i__2].i = 0.;
196*bf2c3715SXin Li /* L10: */
197*bf2c3715SXin Li }
198*bf2c3715SXin Li } else {
199*bf2c3715SXin Li i__1 = *n;
200*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
201*bf2c3715SXin Li i__2 = i__;
202*bf2c3715SXin Li i__3 = i__;
203*bf2c3715SXin Li z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
204*bf2c3715SXin Li z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
205*bf2c3715SXin Li .r;
206*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
207*bf2c3715SXin Li /* L20: */
208*bf2c3715SXin Li }
209*bf2c3715SXin Li }
210*bf2c3715SXin Li } else {
211*bf2c3715SXin Li iy = ky;
212*bf2c3715SXin Li if (beta->r == 0. && beta->i == 0.) {
213*bf2c3715SXin Li i__1 = *n;
214*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
215*bf2c3715SXin Li i__2 = iy;
216*bf2c3715SXin Li y[i__2].r = 0., y[i__2].i = 0.;
217*bf2c3715SXin Li iy += *incy;
218*bf2c3715SXin Li /* L30: */
219*bf2c3715SXin Li }
220*bf2c3715SXin Li } else {
221*bf2c3715SXin Li i__1 = *n;
222*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
223*bf2c3715SXin Li i__2 = iy;
224*bf2c3715SXin Li i__3 = iy;
225*bf2c3715SXin Li z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
226*bf2c3715SXin Li z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
227*bf2c3715SXin Li .r;
228*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
229*bf2c3715SXin Li iy += *incy;
230*bf2c3715SXin Li /* L40: */
231*bf2c3715SXin Li }
232*bf2c3715SXin Li }
233*bf2c3715SXin Li }
234*bf2c3715SXin Li }
235*bf2c3715SXin Li if (alpha->r == 0. && alpha->i == 0.) {
236*bf2c3715SXin Li return 0;
237*bf2c3715SXin Li }
238*bf2c3715SXin Li kk = 1;
239*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
240*bf2c3715SXin Li
241*bf2c3715SXin Li /* Form y when AP contains the upper triangle. */
242*bf2c3715SXin Li
243*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
244*bf2c3715SXin Li i__1 = *n;
245*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
246*bf2c3715SXin Li i__2 = j;
247*bf2c3715SXin Li z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
248*bf2c3715SXin Li alpha->r * x[i__2].i + alpha->i * x[i__2].r;
249*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
250*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
251*bf2c3715SXin Li k = kk;
252*bf2c3715SXin Li i__2 = j - 1;
253*bf2c3715SXin Li for (i__ = 1; i__ <= i__2; ++i__) {
254*bf2c3715SXin Li i__3 = i__;
255*bf2c3715SXin Li i__4 = i__;
256*bf2c3715SXin Li i__5 = k;
257*bf2c3715SXin Li z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
258*bf2c3715SXin Li z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
259*bf2c3715SXin Li .r;
260*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
261*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
262*bf2c3715SXin Li d_cnjg(&z__3, &ap[k]);
263*bf2c3715SXin Li i__3 = i__;
264*bf2c3715SXin Li z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
265*bf2c3715SXin Li z__3.r * x[i__3].i + z__3.i * x[i__3].r;
266*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
267*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
268*bf2c3715SXin Li ++k;
269*bf2c3715SXin Li /* L50: */
270*bf2c3715SXin Li }
271*bf2c3715SXin Li i__2 = j;
272*bf2c3715SXin Li i__3 = j;
273*bf2c3715SXin Li i__4 = kk + j - 1;
274*bf2c3715SXin Li d__1 = ap[i__4].r;
275*bf2c3715SXin Li z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
276*bf2c3715SXin Li z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
277*bf2c3715SXin Li z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
278*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
279*bf2c3715SXin Li z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
280*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
281*bf2c3715SXin Li kk += j;
282*bf2c3715SXin Li /* L60: */
283*bf2c3715SXin Li }
284*bf2c3715SXin Li } else {
285*bf2c3715SXin Li jx = kx;
286*bf2c3715SXin Li jy = ky;
287*bf2c3715SXin Li i__1 = *n;
288*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
289*bf2c3715SXin Li i__2 = jx;
290*bf2c3715SXin Li z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
291*bf2c3715SXin Li alpha->r * x[i__2].i + alpha->i * x[i__2].r;
292*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
293*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
294*bf2c3715SXin Li ix = kx;
295*bf2c3715SXin Li iy = ky;
296*bf2c3715SXin Li i__2 = kk + j - 2;
297*bf2c3715SXin Li for (k = kk; k <= i__2; ++k) {
298*bf2c3715SXin Li i__3 = iy;
299*bf2c3715SXin Li i__4 = iy;
300*bf2c3715SXin Li i__5 = k;
301*bf2c3715SXin Li z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
302*bf2c3715SXin Li z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
303*bf2c3715SXin Li .r;
304*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
305*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
306*bf2c3715SXin Li d_cnjg(&z__3, &ap[k]);
307*bf2c3715SXin Li i__3 = ix;
308*bf2c3715SXin Li z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
309*bf2c3715SXin Li z__3.r * x[i__3].i + z__3.i * x[i__3].r;
310*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
311*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
312*bf2c3715SXin Li ix += *incx;
313*bf2c3715SXin Li iy += *incy;
314*bf2c3715SXin Li /* L70: */
315*bf2c3715SXin Li }
316*bf2c3715SXin Li i__2 = jy;
317*bf2c3715SXin Li i__3 = jy;
318*bf2c3715SXin Li i__4 = kk + j - 1;
319*bf2c3715SXin Li d__1 = ap[i__4].r;
320*bf2c3715SXin Li z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
321*bf2c3715SXin Li z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
322*bf2c3715SXin Li z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
323*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
324*bf2c3715SXin Li z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
325*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
326*bf2c3715SXin Li jx += *incx;
327*bf2c3715SXin Li jy += *incy;
328*bf2c3715SXin Li kk += j;
329*bf2c3715SXin Li /* L80: */
330*bf2c3715SXin Li }
331*bf2c3715SXin Li }
332*bf2c3715SXin Li } else {
333*bf2c3715SXin Li
334*bf2c3715SXin Li /* Form y when AP contains the lower triangle. */
335*bf2c3715SXin Li
336*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
337*bf2c3715SXin Li i__1 = *n;
338*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
339*bf2c3715SXin Li i__2 = j;
340*bf2c3715SXin Li z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
341*bf2c3715SXin Li alpha->r * x[i__2].i + alpha->i * x[i__2].r;
342*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
343*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
344*bf2c3715SXin Li i__2 = j;
345*bf2c3715SXin Li i__3 = j;
346*bf2c3715SXin Li i__4 = kk;
347*bf2c3715SXin Li d__1 = ap[i__4].r;
348*bf2c3715SXin Li z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
349*bf2c3715SXin Li z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
350*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
351*bf2c3715SXin Li k = kk + 1;
352*bf2c3715SXin Li i__2 = *n;
353*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__2; ++i__) {
354*bf2c3715SXin Li i__3 = i__;
355*bf2c3715SXin Li i__4 = i__;
356*bf2c3715SXin Li i__5 = k;
357*bf2c3715SXin Li z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
358*bf2c3715SXin Li z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
359*bf2c3715SXin Li .r;
360*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
361*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
362*bf2c3715SXin Li d_cnjg(&z__3, &ap[k]);
363*bf2c3715SXin Li i__3 = i__;
364*bf2c3715SXin Li z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
365*bf2c3715SXin Li z__3.r * x[i__3].i + z__3.i * x[i__3].r;
366*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
367*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
368*bf2c3715SXin Li ++k;
369*bf2c3715SXin Li /* L90: */
370*bf2c3715SXin Li }
371*bf2c3715SXin Li i__2 = j;
372*bf2c3715SXin Li i__3 = j;
373*bf2c3715SXin Li z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
374*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
375*bf2c3715SXin Li z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
376*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
377*bf2c3715SXin Li kk += *n - j + 1;
378*bf2c3715SXin Li /* L100: */
379*bf2c3715SXin Li }
380*bf2c3715SXin Li } else {
381*bf2c3715SXin Li jx = kx;
382*bf2c3715SXin Li jy = ky;
383*bf2c3715SXin Li i__1 = *n;
384*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
385*bf2c3715SXin Li i__2 = jx;
386*bf2c3715SXin Li z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
387*bf2c3715SXin Li alpha->r * x[i__2].i + alpha->i * x[i__2].r;
388*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
389*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
390*bf2c3715SXin Li i__2 = jy;
391*bf2c3715SXin Li i__3 = jy;
392*bf2c3715SXin Li i__4 = kk;
393*bf2c3715SXin Li d__1 = ap[i__4].r;
394*bf2c3715SXin Li z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
395*bf2c3715SXin Li z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
396*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
397*bf2c3715SXin Li ix = jx;
398*bf2c3715SXin Li iy = jy;
399*bf2c3715SXin Li i__2 = kk + *n - j;
400*bf2c3715SXin Li for (k = kk + 1; k <= i__2; ++k) {
401*bf2c3715SXin Li ix += *incx;
402*bf2c3715SXin Li iy += *incy;
403*bf2c3715SXin Li i__3 = iy;
404*bf2c3715SXin Li i__4 = iy;
405*bf2c3715SXin Li i__5 = k;
406*bf2c3715SXin Li z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
407*bf2c3715SXin Li z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
408*bf2c3715SXin Li .r;
409*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
410*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
411*bf2c3715SXin Li d_cnjg(&z__3, &ap[k]);
412*bf2c3715SXin Li i__3 = ix;
413*bf2c3715SXin Li z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
414*bf2c3715SXin Li z__3.r * x[i__3].i + z__3.i * x[i__3].r;
415*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
416*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
417*bf2c3715SXin Li /* L110: */
418*bf2c3715SXin Li }
419*bf2c3715SXin Li i__2 = jy;
420*bf2c3715SXin Li i__3 = jy;
421*bf2c3715SXin Li z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
422*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
423*bf2c3715SXin Li z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
424*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
425*bf2c3715SXin Li jx += *incx;
426*bf2c3715SXin Li jy += *incy;
427*bf2c3715SXin Li kk += *n - j + 1;
428*bf2c3715SXin Li /* L120: */
429*bf2c3715SXin Li }
430*bf2c3715SXin Li }
431*bf2c3715SXin Li }
432*bf2c3715SXin Li
433*bf2c3715SXin Li return 0;
434*bf2c3715SXin Li
435*bf2c3715SXin Li /* End of ZHPMV . */
436*bf2c3715SXin Li
437*bf2c3715SXin Li } /* zhpmv_ */
438*bf2c3715SXin Li
439