1*bf2c3715SXin Li /* zhbmv.f -- translated by f2c (version 20100827).
2*bf2c3715SXin Li You must link the resulting object file with libf2c:
3*bf2c3715SXin Li on Microsoft Windows system, link with libf2c.lib;
4*bf2c3715SXin Li on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5*bf2c3715SXin Li or, if you install libf2c.a in a standard place, with -lf2c -lm
6*bf2c3715SXin Li -- in that order, at the end of the command line, as in
7*bf2c3715SXin Li cc *.o -lf2c -lm
8*bf2c3715SXin Li Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9*bf2c3715SXin Li
10*bf2c3715SXin Li http://www.netlib.org/f2c/libf2c.zip
11*bf2c3715SXin Li */
12*bf2c3715SXin Li
13*bf2c3715SXin Li #include "datatypes.h"
14*bf2c3715SXin Li
zhbmv_(char * uplo,integer * n,integer * k,doublecomplex * alpha,doublecomplex * a,integer * lda,doublecomplex * x,integer * incx,doublecomplex * beta,doublecomplex * y,integer * incy,ftnlen uplo_len)15*bf2c3715SXin Li /* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
16*bf2c3715SXin Li *alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
17*bf2c3715SXin Li incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
18*bf2c3715SXin Li uplo_len)
19*bf2c3715SXin Li {
20*bf2c3715SXin Li /* System generated locals */
21*bf2c3715SXin Li integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
22*bf2c3715SXin Li doublereal d__1;
23*bf2c3715SXin Li doublecomplex z__1, z__2, z__3, z__4;
24*bf2c3715SXin Li
25*bf2c3715SXin Li /* Builtin functions */
26*bf2c3715SXin Li void d_cnjg(doublecomplex *, doublecomplex *);
27*bf2c3715SXin Li
28*bf2c3715SXin Li /* Local variables */
29*bf2c3715SXin Li integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
30*bf2c3715SXin Li doublecomplex temp1, temp2;
31*bf2c3715SXin Li extern logical lsame_(char *, char *, ftnlen, ftnlen);
32*bf2c3715SXin Li integer kplus1;
33*bf2c3715SXin Li extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
34*bf2c3715SXin Li
35*bf2c3715SXin Li /* .. Scalar Arguments .. */
36*bf2c3715SXin Li /* .. */
37*bf2c3715SXin Li /* .. Array Arguments .. */
38*bf2c3715SXin Li /* .. */
39*bf2c3715SXin Li
40*bf2c3715SXin Li /* Purpose */
41*bf2c3715SXin Li /* ======= */
42*bf2c3715SXin Li
43*bf2c3715SXin Li /* ZHBMV performs the matrix-vector operation */
44*bf2c3715SXin Li
45*bf2c3715SXin Li /* y := alpha*A*x + beta*y, */
46*bf2c3715SXin Li
47*bf2c3715SXin Li /* where alpha and beta are scalars, x and y are n element vectors and */
48*bf2c3715SXin Li /* A is an n by n hermitian band matrix, with k super-diagonals. */
49*bf2c3715SXin Li
50*bf2c3715SXin Li /* Arguments */
51*bf2c3715SXin Li /* ========== */
52*bf2c3715SXin Li
53*bf2c3715SXin Li /* UPLO - CHARACTER*1. */
54*bf2c3715SXin Li /* On entry, UPLO specifies whether the upper or lower */
55*bf2c3715SXin Li /* triangular part of the band matrix A is being supplied as */
56*bf2c3715SXin Li /* follows: */
57*bf2c3715SXin Li
58*bf2c3715SXin Li /* UPLO = 'U' or 'u' The upper triangular part of A is */
59*bf2c3715SXin Li /* being supplied. */
60*bf2c3715SXin Li
61*bf2c3715SXin Li /* UPLO = 'L' or 'l' The lower triangular part of A is */
62*bf2c3715SXin Li /* being supplied. */
63*bf2c3715SXin Li
64*bf2c3715SXin Li /* Unchanged on exit. */
65*bf2c3715SXin Li
66*bf2c3715SXin Li /* N - INTEGER. */
67*bf2c3715SXin Li /* On entry, N specifies the order of the matrix A. */
68*bf2c3715SXin Li /* N must be at least zero. */
69*bf2c3715SXin Li /* Unchanged on exit. */
70*bf2c3715SXin Li
71*bf2c3715SXin Li /* K - INTEGER. */
72*bf2c3715SXin Li /* On entry, K specifies the number of super-diagonals of the */
73*bf2c3715SXin Li /* matrix A. K must satisfy 0 .le. K. */
74*bf2c3715SXin Li /* Unchanged on exit. */
75*bf2c3715SXin Li
76*bf2c3715SXin Li /* ALPHA - COMPLEX*16 . */
77*bf2c3715SXin Li /* On entry, ALPHA specifies the scalar alpha. */
78*bf2c3715SXin Li /* Unchanged on exit. */
79*bf2c3715SXin Li
80*bf2c3715SXin Li /* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
81*bf2c3715SXin Li /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
82*bf2c3715SXin Li /* by n part of the array A must contain the upper triangular */
83*bf2c3715SXin Li /* band part of the hermitian matrix, supplied column by */
84*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row */
85*bf2c3715SXin Li /* ( k + 1 ) of the array, the first super-diagonal starting at */
86*bf2c3715SXin Li /* position 2 in row k, and so on. The top left k by k triangle */
87*bf2c3715SXin Li /* of the array A is not referenced. */
88*bf2c3715SXin Li /* The following program segment will transfer the upper */
89*bf2c3715SXin Li /* triangular part of a hermitian band matrix from conventional */
90*bf2c3715SXin Li /* full matrix storage to band storage: */
91*bf2c3715SXin Li
92*bf2c3715SXin Li /* DO 20, J = 1, N */
93*bf2c3715SXin Li /* M = K + 1 - J */
94*bf2c3715SXin Li /* DO 10, I = MAX( 1, J - K ), J */
95*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
96*bf2c3715SXin Li /* 10 CONTINUE */
97*bf2c3715SXin Li /* 20 CONTINUE */
98*bf2c3715SXin Li
99*bf2c3715SXin Li /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
100*bf2c3715SXin Li /* by n part of the array A must contain the lower triangular */
101*bf2c3715SXin Li /* band part of the hermitian matrix, supplied column by */
102*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row 1 of */
103*bf2c3715SXin Li /* the array, the first sub-diagonal starting at position 1 in */
104*bf2c3715SXin Li /* row 2, and so on. The bottom right k by k triangle of the */
105*bf2c3715SXin Li /* array A is not referenced. */
106*bf2c3715SXin Li /* The following program segment will transfer the lower */
107*bf2c3715SXin Li /* triangular part of a hermitian band matrix from conventional */
108*bf2c3715SXin Li /* full matrix storage to band storage: */
109*bf2c3715SXin Li
110*bf2c3715SXin Li /* DO 20, J = 1, N */
111*bf2c3715SXin Li /* M = 1 - J */
112*bf2c3715SXin Li /* DO 10, I = J, MIN( N, J + K ) */
113*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
114*bf2c3715SXin Li /* 10 CONTINUE */
115*bf2c3715SXin Li /* 20 CONTINUE */
116*bf2c3715SXin Li
117*bf2c3715SXin Li /* Note that the imaginary parts of the diagonal elements need */
118*bf2c3715SXin Li /* not be set and are assumed to be zero. */
119*bf2c3715SXin Li /* Unchanged on exit. */
120*bf2c3715SXin Li
121*bf2c3715SXin Li /* LDA - INTEGER. */
122*bf2c3715SXin Li /* On entry, LDA specifies the first dimension of A as declared */
123*bf2c3715SXin Li /* in the calling (sub) program. LDA must be at least */
124*bf2c3715SXin Li /* ( k + 1 ). */
125*bf2c3715SXin Li /* Unchanged on exit. */
126*bf2c3715SXin Li
127*bf2c3715SXin Li /* X - COMPLEX*16 array of DIMENSION at least */
128*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCX ) ). */
129*bf2c3715SXin Li /* Before entry, the incremented array X must contain the */
130*bf2c3715SXin Li /* vector x. */
131*bf2c3715SXin Li /* Unchanged on exit. */
132*bf2c3715SXin Li
133*bf2c3715SXin Li /* INCX - INTEGER. */
134*bf2c3715SXin Li /* On entry, INCX specifies the increment for the elements of */
135*bf2c3715SXin Li /* X. INCX must not be zero. */
136*bf2c3715SXin Li /* Unchanged on exit. */
137*bf2c3715SXin Li
138*bf2c3715SXin Li /* BETA - COMPLEX*16 . */
139*bf2c3715SXin Li /* On entry, BETA specifies the scalar beta. */
140*bf2c3715SXin Li /* Unchanged on exit. */
141*bf2c3715SXin Li
142*bf2c3715SXin Li /* Y - COMPLEX*16 array of DIMENSION at least */
143*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCY ) ). */
144*bf2c3715SXin Li /* Before entry, the incremented array Y must contain the */
145*bf2c3715SXin Li /* vector y. On exit, Y is overwritten by the updated vector y. */
146*bf2c3715SXin Li
147*bf2c3715SXin Li /* INCY - INTEGER. */
148*bf2c3715SXin Li /* On entry, INCY specifies the increment for the elements of */
149*bf2c3715SXin Li /* Y. INCY must not be zero. */
150*bf2c3715SXin Li /* Unchanged on exit. */
151*bf2c3715SXin Li
152*bf2c3715SXin Li /* Further Details */
153*bf2c3715SXin Li /* =============== */
154*bf2c3715SXin Li
155*bf2c3715SXin Li /* Level 2 Blas routine. */
156*bf2c3715SXin Li
157*bf2c3715SXin Li /* -- Written on 22-October-1986. */
158*bf2c3715SXin Li /* Jack Dongarra, Argonne National Lab. */
159*bf2c3715SXin Li /* Jeremy Du Croz, Nag Central Office. */
160*bf2c3715SXin Li /* Sven Hammarling, Nag Central Office. */
161*bf2c3715SXin Li /* Richard Hanson, Sandia National Labs. */
162*bf2c3715SXin Li
163*bf2c3715SXin Li /* ===================================================================== */
164*bf2c3715SXin Li
165*bf2c3715SXin Li /* .. Parameters .. */
166*bf2c3715SXin Li /* .. */
167*bf2c3715SXin Li /* .. Local Scalars .. */
168*bf2c3715SXin Li /* .. */
169*bf2c3715SXin Li /* .. External Functions .. */
170*bf2c3715SXin Li /* .. */
171*bf2c3715SXin Li /* .. External Subroutines .. */
172*bf2c3715SXin Li /* .. */
173*bf2c3715SXin Li /* .. Intrinsic Functions .. */
174*bf2c3715SXin Li /* .. */
175*bf2c3715SXin Li
176*bf2c3715SXin Li /* Test the input parameters. */
177*bf2c3715SXin Li
178*bf2c3715SXin Li /* Parameter adjustments */
179*bf2c3715SXin Li a_dim1 = *lda;
180*bf2c3715SXin Li a_offset = 1 + a_dim1;
181*bf2c3715SXin Li a -= a_offset;
182*bf2c3715SXin Li --x;
183*bf2c3715SXin Li --y;
184*bf2c3715SXin Li
185*bf2c3715SXin Li /* Function Body */
186*bf2c3715SXin Li info = 0;
187*bf2c3715SXin Li if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
188*bf2c3715SXin Li ftnlen)1, (ftnlen)1)) {
189*bf2c3715SXin Li info = 1;
190*bf2c3715SXin Li } else if (*n < 0) {
191*bf2c3715SXin Li info = 2;
192*bf2c3715SXin Li } else if (*k < 0) {
193*bf2c3715SXin Li info = 3;
194*bf2c3715SXin Li } else if (*lda < *k + 1) {
195*bf2c3715SXin Li info = 6;
196*bf2c3715SXin Li } else if (*incx == 0) {
197*bf2c3715SXin Li info = 8;
198*bf2c3715SXin Li } else if (*incy == 0) {
199*bf2c3715SXin Li info = 11;
200*bf2c3715SXin Li }
201*bf2c3715SXin Li if (info != 0) {
202*bf2c3715SXin Li xerbla_("ZHBMV ", &info, (ftnlen)6);
203*bf2c3715SXin Li return 0;
204*bf2c3715SXin Li }
205*bf2c3715SXin Li
206*bf2c3715SXin Li /* Quick return if possible. */
207*bf2c3715SXin Li
208*bf2c3715SXin Li if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
209*bf2c3715SXin Li beta->i == 0.))) {
210*bf2c3715SXin Li return 0;
211*bf2c3715SXin Li }
212*bf2c3715SXin Li
213*bf2c3715SXin Li /* Set up the start points in X and Y. */
214*bf2c3715SXin Li
215*bf2c3715SXin Li if (*incx > 0) {
216*bf2c3715SXin Li kx = 1;
217*bf2c3715SXin Li } else {
218*bf2c3715SXin Li kx = 1 - (*n - 1) * *incx;
219*bf2c3715SXin Li }
220*bf2c3715SXin Li if (*incy > 0) {
221*bf2c3715SXin Li ky = 1;
222*bf2c3715SXin Li } else {
223*bf2c3715SXin Li ky = 1 - (*n - 1) * *incy;
224*bf2c3715SXin Li }
225*bf2c3715SXin Li
226*bf2c3715SXin Li /* Start the operations. In this version the elements of the array A */
227*bf2c3715SXin Li /* are accessed sequentially with one pass through A. */
228*bf2c3715SXin Li
229*bf2c3715SXin Li /* First form y := beta*y. */
230*bf2c3715SXin Li
231*bf2c3715SXin Li if (beta->r != 1. || beta->i != 0.) {
232*bf2c3715SXin Li if (*incy == 1) {
233*bf2c3715SXin Li if (beta->r == 0. && beta->i == 0.) {
234*bf2c3715SXin Li i__1 = *n;
235*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
236*bf2c3715SXin Li i__2 = i__;
237*bf2c3715SXin Li y[i__2].r = 0., y[i__2].i = 0.;
238*bf2c3715SXin Li /* L10: */
239*bf2c3715SXin Li }
240*bf2c3715SXin Li } else {
241*bf2c3715SXin Li i__1 = *n;
242*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
243*bf2c3715SXin Li i__2 = i__;
244*bf2c3715SXin Li i__3 = i__;
245*bf2c3715SXin Li z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
246*bf2c3715SXin Li z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
247*bf2c3715SXin Li .r;
248*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
249*bf2c3715SXin Li /* L20: */
250*bf2c3715SXin Li }
251*bf2c3715SXin Li }
252*bf2c3715SXin Li } else {
253*bf2c3715SXin Li iy = ky;
254*bf2c3715SXin Li if (beta->r == 0. && beta->i == 0.) {
255*bf2c3715SXin Li i__1 = *n;
256*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
257*bf2c3715SXin Li i__2 = iy;
258*bf2c3715SXin Li y[i__2].r = 0., y[i__2].i = 0.;
259*bf2c3715SXin Li iy += *incy;
260*bf2c3715SXin Li /* L30: */
261*bf2c3715SXin Li }
262*bf2c3715SXin Li } else {
263*bf2c3715SXin Li i__1 = *n;
264*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
265*bf2c3715SXin Li i__2 = iy;
266*bf2c3715SXin Li i__3 = iy;
267*bf2c3715SXin Li z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
268*bf2c3715SXin Li z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
269*bf2c3715SXin Li .r;
270*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
271*bf2c3715SXin Li iy += *incy;
272*bf2c3715SXin Li /* L40: */
273*bf2c3715SXin Li }
274*bf2c3715SXin Li }
275*bf2c3715SXin Li }
276*bf2c3715SXin Li }
277*bf2c3715SXin Li if (alpha->r == 0. && alpha->i == 0.) {
278*bf2c3715SXin Li return 0;
279*bf2c3715SXin Li }
280*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
281*bf2c3715SXin Li
282*bf2c3715SXin Li /* Form y when upper triangle of A is stored. */
283*bf2c3715SXin Li
284*bf2c3715SXin Li kplus1 = *k + 1;
285*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
286*bf2c3715SXin Li i__1 = *n;
287*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
288*bf2c3715SXin Li i__2 = j;
289*bf2c3715SXin Li z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
290*bf2c3715SXin Li alpha->r * x[i__2].i + alpha->i * x[i__2].r;
291*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
292*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
293*bf2c3715SXin Li l = kplus1 - j;
294*bf2c3715SXin Li /* Computing MAX */
295*bf2c3715SXin Li i__2 = 1, i__3 = j - *k;
296*bf2c3715SXin Li i__4 = j - 1;
297*bf2c3715SXin Li for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
298*bf2c3715SXin Li i__2 = i__;
299*bf2c3715SXin Li i__3 = i__;
300*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
301*bf2c3715SXin Li z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
302*bf2c3715SXin Li z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
303*bf2c3715SXin Li .r;
304*bf2c3715SXin Li z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
305*bf2c3715SXin Li y[i__2].r = z__1.r, y[i__2].i = z__1.i;
306*bf2c3715SXin Li d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
307*bf2c3715SXin Li i__2 = i__;
308*bf2c3715SXin Li z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
309*bf2c3715SXin Li z__3.r * x[i__2].i + z__3.i * x[i__2].r;
310*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
311*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
312*bf2c3715SXin Li /* L50: */
313*bf2c3715SXin Li }
314*bf2c3715SXin Li i__4 = j;
315*bf2c3715SXin Li i__2 = j;
316*bf2c3715SXin Li i__3 = kplus1 + j * a_dim1;
317*bf2c3715SXin Li d__1 = a[i__3].r;
318*bf2c3715SXin Li z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
319*bf2c3715SXin Li z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
320*bf2c3715SXin Li z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
321*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
322*bf2c3715SXin Li z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
323*bf2c3715SXin Li y[i__4].r = z__1.r, y[i__4].i = z__1.i;
324*bf2c3715SXin Li /* L60: */
325*bf2c3715SXin Li }
326*bf2c3715SXin Li } else {
327*bf2c3715SXin Li jx = kx;
328*bf2c3715SXin Li jy = ky;
329*bf2c3715SXin Li i__1 = *n;
330*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
331*bf2c3715SXin Li i__4 = jx;
332*bf2c3715SXin Li z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
333*bf2c3715SXin Li alpha->r * x[i__4].i + alpha->i * x[i__4].r;
334*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
335*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
336*bf2c3715SXin Li ix = kx;
337*bf2c3715SXin Li iy = ky;
338*bf2c3715SXin Li l = kplus1 - j;
339*bf2c3715SXin Li /* Computing MAX */
340*bf2c3715SXin Li i__4 = 1, i__2 = j - *k;
341*bf2c3715SXin Li i__3 = j - 1;
342*bf2c3715SXin Li for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
343*bf2c3715SXin Li i__4 = iy;
344*bf2c3715SXin Li i__2 = iy;
345*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
346*bf2c3715SXin Li z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
347*bf2c3715SXin Li z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
348*bf2c3715SXin Li .r;
349*bf2c3715SXin Li z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
350*bf2c3715SXin Li y[i__4].r = z__1.r, y[i__4].i = z__1.i;
351*bf2c3715SXin Li d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
352*bf2c3715SXin Li i__4 = ix;
353*bf2c3715SXin Li z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
354*bf2c3715SXin Li z__3.r * x[i__4].i + z__3.i * x[i__4].r;
355*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
356*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
357*bf2c3715SXin Li ix += *incx;
358*bf2c3715SXin Li iy += *incy;
359*bf2c3715SXin Li /* L70: */
360*bf2c3715SXin Li }
361*bf2c3715SXin Li i__3 = jy;
362*bf2c3715SXin Li i__4 = jy;
363*bf2c3715SXin Li i__2 = kplus1 + j * a_dim1;
364*bf2c3715SXin Li d__1 = a[i__2].r;
365*bf2c3715SXin Li z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
366*bf2c3715SXin Li z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
367*bf2c3715SXin Li z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
368*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
369*bf2c3715SXin Li z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
370*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
371*bf2c3715SXin Li jx += *incx;
372*bf2c3715SXin Li jy += *incy;
373*bf2c3715SXin Li if (j > *k) {
374*bf2c3715SXin Li kx += *incx;
375*bf2c3715SXin Li ky += *incy;
376*bf2c3715SXin Li }
377*bf2c3715SXin Li /* L80: */
378*bf2c3715SXin Li }
379*bf2c3715SXin Li }
380*bf2c3715SXin Li } else {
381*bf2c3715SXin Li
382*bf2c3715SXin Li /* Form y when lower triangle of A is stored. */
383*bf2c3715SXin Li
384*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
385*bf2c3715SXin Li i__1 = *n;
386*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
387*bf2c3715SXin Li i__3 = j;
388*bf2c3715SXin Li z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
389*bf2c3715SXin Li alpha->r * x[i__3].i + alpha->i * x[i__3].r;
390*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
391*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
392*bf2c3715SXin Li i__3 = j;
393*bf2c3715SXin Li i__4 = j;
394*bf2c3715SXin Li i__2 = j * a_dim1 + 1;
395*bf2c3715SXin Li d__1 = a[i__2].r;
396*bf2c3715SXin Li z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
397*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
398*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
399*bf2c3715SXin Li l = 1 - j;
400*bf2c3715SXin Li /* Computing MIN */
401*bf2c3715SXin Li i__4 = *n, i__2 = j + *k;
402*bf2c3715SXin Li i__3 = min(i__4,i__2);
403*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__3; ++i__) {
404*bf2c3715SXin Li i__4 = i__;
405*bf2c3715SXin Li i__2 = i__;
406*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
407*bf2c3715SXin Li z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
408*bf2c3715SXin Li z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
409*bf2c3715SXin Li .r;
410*bf2c3715SXin Li z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
411*bf2c3715SXin Li y[i__4].r = z__1.r, y[i__4].i = z__1.i;
412*bf2c3715SXin Li d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
413*bf2c3715SXin Li i__4 = i__;
414*bf2c3715SXin Li z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
415*bf2c3715SXin Li z__3.r * x[i__4].i + z__3.i * x[i__4].r;
416*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
417*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
418*bf2c3715SXin Li /* L90: */
419*bf2c3715SXin Li }
420*bf2c3715SXin Li i__3 = j;
421*bf2c3715SXin Li i__4 = j;
422*bf2c3715SXin Li z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
423*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
424*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
425*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
426*bf2c3715SXin Li /* L100: */
427*bf2c3715SXin Li }
428*bf2c3715SXin Li } else {
429*bf2c3715SXin Li jx = kx;
430*bf2c3715SXin Li jy = ky;
431*bf2c3715SXin Li i__1 = *n;
432*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
433*bf2c3715SXin Li i__3 = jx;
434*bf2c3715SXin Li z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
435*bf2c3715SXin Li alpha->r * x[i__3].i + alpha->i * x[i__3].r;
436*bf2c3715SXin Li temp1.r = z__1.r, temp1.i = z__1.i;
437*bf2c3715SXin Li temp2.r = 0., temp2.i = 0.;
438*bf2c3715SXin Li i__3 = jy;
439*bf2c3715SXin Li i__4 = jy;
440*bf2c3715SXin Li i__2 = j * a_dim1 + 1;
441*bf2c3715SXin Li d__1 = a[i__2].r;
442*bf2c3715SXin Li z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
443*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
444*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
445*bf2c3715SXin Li l = 1 - j;
446*bf2c3715SXin Li ix = jx;
447*bf2c3715SXin Li iy = jy;
448*bf2c3715SXin Li /* Computing MIN */
449*bf2c3715SXin Li i__4 = *n, i__2 = j + *k;
450*bf2c3715SXin Li i__3 = min(i__4,i__2);
451*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__3; ++i__) {
452*bf2c3715SXin Li ix += *incx;
453*bf2c3715SXin Li iy += *incy;
454*bf2c3715SXin Li i__4 = iy;
455*bf2c3715SXin Li i__2 = iy;
456*bf2c3715SXin Li i__5 = l + i__ + j * a_dim1;
457*bf2c3715SXin Li z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
458*bf2c3715SXin Li z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
459*bf2c3715SXin Li .r;
460*bf2c3715SXin Li z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
461*bf2c3715SXin Li y[i__4].r = z__1.r, y[i__4].i = z__1.i;
462*bf2c3715SXin Li d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
463*bf2c3715SXin Li i__4 = ix;
464*bf2c3715SXin Li z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
465*bf2c3715SXin Li z__3.r * x[i__4].i + z__3.i * x[i__4].r;
466*bf2c3715SXin Li z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
467*bf2c3715SXin Li temp2.r = z__1.r, temp2.i = z__1.i;
468*bf2c3715SXin Li /* L110: */
469*bf2c3715SXin Li }
470*bf2c3715SXin Li i__3 = jy;
471*bf2c3715SXin Li i__4 = jy;
472*bf2c3715SXin Li z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
473*bf2c3715SXin Li alpha->r * temp2.i + alpha->i * temp2.r;
474*bf2c3715SXin Li z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
475*bf2c3715SXin Li y[i__3].r = z__1.r, y[i__3].i = z__1.i;
476*bf2c3715SXin Li jx += *incx;
477*bf2c3715SXin Li jy += *incy;
478*bf2c3715SXin Li /* L120: */
479*bf2c3715SXin Li }
480*bf2c3715SXin Li }
481*bf2c3715SXin Li }
482*bf2c3715SXin Li
483*bf2c3715SXin Li return 0;
484*bf2c3715SXin Li
485*bf2c3715SXin Li /* End of ZHBMV . */
486*bf2c3715SXin Li
487*bf2c3715SXin Li } /* zhbmv_ */
488*bf2c3715SXin Li
489