1*bf2c3715SXin Li /* stbmv.f -- translated by f2c (version 20100827).
2*bf2c3715SXin Li You must link the resulting object file with libf2c:
3*bf2c3715SXin Li on Microsoft Windows system, link with libf2c.lib;
4*bf2c3715SXin Li on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5*bf2c3715SXin Li or, if you install libf2c.a in a standard place, with -lf2c -lm
6*bf2c3715SXin Li -- in that order, at the end of the command line, as in
7*bf2c3715SXin Li cc *.o -lf2c -lm
8*bf2c3715SXin Li Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9*bf2c3715SXin Li
10*bf2c3715SXin Li http://www.netlib.org/f2c/libf2c.zip
11*bf2c3715SXin Li */
12*bf2c3715SXin Li
13*bf2c3715SXin Li #include "datatypes.h"
14*bf2c3715SXin Li
stbmv_(char * uplo,char * trans,char * diag,integer * n,integer * k,real * a,integer * lda,real * x,integer * incx,ftnlen uplo_len,ftnlen trans_len,ftnlen diag_len)15*bf2c3715SXin Li /* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
16*bf2c3715SXin Li integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
17*bf2c3715SXin Li uplo_len, ftnlen trans_len, ftnlen diag_len)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li /* System generated locals */
20*bf2c3715SXin Li integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
21*bf2c3715SXin Li
22*bf2c3715SXin Li /* Local variables */
23*bf2c3715SXin Li integer i__, j, l, ix, jx, kx, info;
24*bf2c3715SXin Li real temp;
25*bf2c3715SXin Li extern logical lsame_(char *, char *, ftnlen, ftnlen);
26*bf2c3715SXin Li integer kplus1;
27*bf2c3715SXin Li extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
28*bf2c3715SXin Li logical nounit;
29*bf2c3715SXin Li
30*bf2c3715SXin Li /* .. Scalar Arguments .. */
31*bf2c3715SXin Li /* .. */
32*bf2c3715SXin Li /* .. Array Arguments .. */
33*bf2c3715SXin Li /* .. */
34*bf2c3715SXin Li
35*bf2c3715SXin Li /* Purpose */
36*bf2c3715SXin Li /* ======= */
37*bf2c3715SXin Li
38*bf2c3715SXin Li /* STBMV performs one of the matrix-vector operations */
39*bf2c3715SXin Li
40*bf2c3715SXin Li /* x := A*x, or x := A'*x, */
41*bf2c3715SXin Li
42*bf2c3715SXin Li /* where x is an n element vector and A is an n by n unit, or non-unit, */
43*bf2c3715SXin Li /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
44*bf2c3715SXin Li
45*bf2c3715SXin Li /* Arguments */
46*bf2c3715SXin Li /* ========== */
47*bf2c3715SXin Li
48*bf2c3715SXin Li /* UPLO - CHARACTER*1. */
49*bf2c3715SXin Li /* On entry, UPLO specifies whether the matrix is an upper or */
50*bf2c3715SXin Li /* lower triangular matrix as follows: */
51*bf2c3715SXin Li
52*bf2c3715SXin Li /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
53*bf2c3715SXin Li
54*bf2c3715SXin Li /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
55*bf2c3715SXin Li
56*bf2c3715SXin Li /* Unchanged on exit. */
57*bf2c3715SXin Li
58*bf2c3715SXin Li /* TRANS - CHARACTER*1. */
59*bf2c3715SXin Li /* On entry, TRANS specifies the operation to be performed as */
60*bf2c3715SXin Li /* follows: */
61*bf2c3715SXin Li
62*bf2c3715SXin Li /* TRANS = 'N' or 'n' x := A*x. */
63*bf2c3715SXin Li
64*bf2c3715SXin Li /* TRANS = 'T' or 't' x := A'*x. */
65*bf2c3715SXin Li
66*bf2c3715SXin Li /* TRANS = 'C' or 'c' x := A'*x. */
67*bf2c3715SXin Li
68*bf2c3715SXin Li /* Unchanged on exit. */
69*bf2c3715SXin Li
70*bf2c3715SXin Li /* DIAG - CHARACTER*1. */
71*bf2c3715SXin Li /* On entry, DIAG specifies whether or not A is unit */
72*bf2c3715SXin Li /* triangular as follows: */
73*bf2c3715SXin Li
74*bf2c3715SXin Li /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
75*bf2c3715SXin Li
76*bf2c3715SXin Li /* DIAG = 'N' or 'n' A is not assumed to be unit */
77*bf2c3715SXin Li /* triangular. */
78*bf2c3715SXin Li
79*bf2c3715SXin Li /* Unchanged on exit. */
80*bf2c3715SXin Li
81*bf2c3715SXin Li /* N - INTEGER. */
82*bf2c3715SXin Li /* On entry, N specifies the order of the matrix A. */
83*bf2c3715SXin Li /* N must be at least zero. */
84*bf2c3715SXin Li /* Unchanged on exit. */
85*bf2c3715SXin Li
86*bf2c3715SXin Li /* K - INTEGER. */
87*bf2c3715SXin Li /* On entry with UPLO = 'U' or 'u', K specifies the number of */
88*bf2c3715SXin Li /* super-diagonals of the matrix A. */
89*bf2c3715SXin Li /* On entry with UPLO = 'L' or 'l', K specifies the number of */
90*bf2c3715SXin Li /* sub-diagonals of the matrix A. */
91*bf2c3715SXin Li /* K must satisfy 0 .le. K. */
92*bf2c3715SXin Li /* Unchanged on exit. */
93*bf2c3715SXin Li
94*bf2c3715SXin Li /* A - REAL array of DIMENSION ( LDA, n ). */
95*bf2c3715SXin Li /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
96*bf2c3715SXin Li /* by n part of the array A must contain the upper triangular */
97*bf2c3715SXin Li /* band part of the matrix of coefficients, supplied column by */
98*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row */
99*bf2c3715SXin Li /* ( k + 1 ) of the array, the first super-diagonal starting at */
100*bf2c3715SXin Li /* position 2 in row k, and so on. The top left k by k triangle */
101*bf2c3715SXin Li /* of the array A is not referenced. */
102*bf2c3715SXin Li /* The following program segment will transfer an upper */
103*bf2c3715SXin Li /* triangular band matrix from conventional full matrix storage */
104*bf2c3715SXin Li /* to band storage: */
105*bf2c3715SXin Li
106*bf2c3715SXin Li /* DO 20, J = 1, N */
107*bf2c3715SXin Li /* M = K + 1 - J */
108*bf2c3715SXin Li /* DO 10, I = MAX( 1, J - K ), J */
109*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
110*bf2c3715SXin Li /* 10 CONTINUE */
111*bf2c3715SXin Li /* 20 CONTINUE */
112*bf2c3715SXin Li
113*bf2c3715SXin Li /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
114*bf2c3715SXin Li /* by n part of the array A must contain the lower triangular */
115*bf2c3715SXin Li /* band part of the matrix of coefficients, supplied column by */
116*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row 1 of */
117*bf2c3715SXin Li /* the array, the first sub-diagonal starting at position 1 in */
118*bf2c3715SXin Li /* row 2, and so on. The bottom right k by k triangle of the */
119*bf2c3715SXin Li /* array A is not referenced. */
120*bf2c3715SXin Li /* The following program segment will transfer a lower */
121*bf2c3715SXin Li /* triangular band matrix from conventional full matrix storage */
122*bf2c3715SXin Li /* to band storage: */
123*bf2c3715SXin Li
124*bf2c3715SXin Li /* DO 20, J = 1, N */
125*bf2c3715SXin Li /* M = 1 - J */
126*bf2c3715SXin Li /* DO 10, I = J, MIN( N, J + K ) */
127*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
128*bf2c3715SXin Li /* 10 CONTINUE */
129*bf2c3715SXin Li /* 20 CONTINUE */
130*bf2c3715SXin Li
131*bf2c3715SXin Li /* Note that when DIAG = 'U' or 'u' the elements of the array A */
132*bf2c3715SXin Li /* corresponding to the diagonal elements of the matrix are not */
133*bf2c3715SXin Li /* referenced, but are assumed to be unity. */
134*bf2c3715SXin Li /* Unchanged on exit. */
135*bf2c3715SXin Li
136*bf2c3715SXin Li /* LDA - INTEGER. */
137*bf2c3715SXin Li /* On entry, LDA specifies the first dimension of A as declared */
138*bf2c3715SXin Li /* in the calling (sub) program. LDA must be at least */
139*bf2c3715SXin Li /* ( k + 1 ). */
140*bf2c3715SXin Li /* Unchanged on exit. */
141*bf2c3715SXin Li
142*bf2c3715SXin Li /* X - REAL array of dimension at least */
143*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCX ) ). */
144*bf2c3715SXin Li /* Before entry, the incremented array X must contain the n */
145*bf2c3715SXin Li /* element vector x. On exit, X is overwritten with the */
146*bf2c3715SXin Li /* transformed vector x. */
147*bf2c3715SXin Li
148*bf2c3715SXin Li /* INCX - INTEGER. */
149*bf2c3715SXin Li /* On entry, INCX specifies the increment for the elements of */
150*bf2c3715SXin Li /* X. INCX must not be zero. */
151*bf2c3715SXin Li /* Unchanged on exit. */
152*bf2c3715SXin Li
153*bf2c3715SXin Li /* Further Details */
154*bf2c3715SXin Li /* =============== */
155*bf2c3715SXin Li
156*bf2c3715SXin Li /* Level 2 Blas routine. */
157*bf2c3715SXin Li
158*bf2c3715SXin Li /* -- Written on 22-October-1986. */
159*bf2c3715SXin Li /* Jack Dongarra, Argonne National Lab. */
160*bf2c3715SXin Li /* Jeremy Du Croz, Nag Central Office. */
161*bf2c3715SXin Li /* Sven Hammarling, Nag Central Office. */
162*bf2c3715SXin Li /* Richard Hanson, Sandia National Labs. */
163*bf2c3715SXin Li
164*bf2c3715SXin Li /* ===================================================================== */
165*bf2c3715SXin Li
166*bf2c3715SXin Li /* .. Parameters .. */
167*bf2c3715SXin Li /* .. */
168*bf2c3715SXin Li /* .. Local Scalars .. */
169*bf2c3715SXin Li /* .. */
170*bf2c3715SXin Li /* .. External Functions .. */
171*bf2c3715SXin Li /* .. */
172*bf2c3715SXin Li /* .. External Subroutines .. */
173*bf2c3715SXin Li /* .. */
174*bf2c3715SXin Li /* .. Intrinsic Functions .. */
175*bf2c3715SXin Li /* .. */
176*bf2c3715SXin Li
177*bf2c3715SXin Li /* Test the input parameters. */
178*bf2c3715SXin Li
179*bf2c3715SXin Li /* Parameter adjustments */
180*bf2c3715SXin Li a_dim1 = *lda;
181*bf2c3715SXin Li a_offset = 1 + a_dim1;
182*bf2c3715SXin Li a -= a_offset;
183*bf2c3715SXin Li --x;
184*bf2c3715SXin Li
185*bf2c3715SXin Li /* Function Body */
186*bf2c3715SXin Li info = 0;
187*bf2c3715SXin Li if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
188*bf2c3715SXin Li ftnlen)1, (ftnlen)1)) {
189*bf2c3715SXin Li info = 1;
190*bf2c3715SXin Li } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
191*bf2c3715SXin Li "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
192*bf2c3715SXin Li ftnlen)1)) {
193*bf2c3715SXin Li info = 2;
194*bf2c3715SXin Li } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
195*bf2c3715SXin Li "N", (ftnlen)1, (ftnlen)1)) {
196*bf2c3715SXin Li info = 3;
197*bf2c3715SXin Li } else if (*n < 0) {
198*bf2c3715SXin Li info = 4;
199*bf2c3715SXin Li } else if (*k < 0) {
200*bf2c3715SXin Li info = 5;
201*bf2c3715SXin Li } else if (*lda < *k + 1) {
202*bf2c3715SXin Li info = 7;
203*bf2c3715SXin Li } else if (*incx == 0) {
204*bf2c3715SXin Li info = 9;
205*bf2c3715SXin Li }
206*bf2c3715SXin Li if (info != 0) {
207*bf2c3715SXin Li xerbla_("STBMV ", &info, (ftnlen)6);
208*bf2c3715SXin Li return 0;
209*bf2c3715SXin Li }
210*bf2c3715SXin Li
211*bf2c3715SXin Li /* Quick return if possible. */
212*bf2c3715SXin Li
213*bf2c3715SXin Li if (*n == 0) {
214*bf2c3715SXin Li return 0;
215*bf2c3715SXin Li }
216*bf2c3715SXin Li
217*bf2c3715SXin Li nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
218*bf2c3715SXin Li
219*bf2c3715SXin Li /* Set up the start point in X if the increment is not unity. This */
220*bf2c3715SXin Li /* will be ( N - 1 )*INCX too small for descending loops. */
221*bf2c3715SXin Li
222*bf2c3715SXin Li if (*incx <= 0) {
223*bf2c3715SXin Li kx = 1 - (*n - 1) * *incx;
224*bf2c3715SXin Li } else if (*incx != 1) {
225*bf2c3715SXin Li kx = 1;
226*bf2c3715SXin Li }
227*bf2c3715SXin Li
228*bf2c3715SXin Li /* Start the operations. In this version the elements of A are */
229*bf2c3715SXin Li /* accessed sequentially with one pass through A. */
230*bf2c3715SXin Li
231*bf2c3715SXin Li if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
232*bf2c3715SXin Li
233*bf2c3715SXin Li /* Form x := A*x. */
234*bf2c3715SXin Li
235*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
236*bf2c3715SXin Li kplus1 = *k + 1;
237*bf2c3715SXin Li if (*incx == 1) {
238*bf2c3715SXin Li i__1 = *n;
239*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
240*bf2c3715SXin Li if (x[j] != 0.f) {
241*bf2c3715SXin Li temp = x[j];
242*bf2c3715SXin Li l = kplus1 - j;
243*bf2c3715SXin Li /* Computing MAX */
244*bf2c3715SXin Li i__2 = 1, i__3 = j - *k;
245*bf2c3715SXin Li i__4 = j - 1;
246*bf2c3715SXin Li for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
247*bf2c3715SXin Li x[i__] += temp * a[l + i__ + j * a_dim1];
248*bf2c3715SXin Li /* L10: */
249*bf2c3715SXin Li }
250*bf2c3715SXin Li if (nounit) {
251*bf2c3715SXin Li x[j] *= a[kplus1 + j * a_dim1];
252*bf2c3715SXin Li }
253*bf2c3715SXin Li }
254*bf2c3715SXin Li /* L20: */
255*bf2c3715SXin Li }
256*bf2c3715SXin Li } else {
257*bf2c3715SXin Li jx = kx;
258*bf2c3715SXin Li i__1 = *n;
259*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
260*bf2c3715SXin Li if (x[jx] != 0.f) {
261*bf2c3715SXin Li temp = x[jx];
262*bf2c3715SXin Li ix = kx;
263*bf2c3715SXin Li l = kplus1 - j;
264*bf2c3715SXin Li /* Computing MAX */
265*bf2c3715SXin Li i__4 = 1, i__2 = j - *k;
266*bf2c3715SXin Li i__3 = j - 1;
267*bf2c3715SXin Li for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
268*bf2c3715SXin Li x[ix] += temp * a[l + i__ + j * a_dim1];
269*bf2c3715SXin Li ix += *incx;
270*bf2c3715SXin Li /* L30: */
271*bf2c3715SXin Li }
272*bf2c3715SXin Li if (nounit) {
273*bf2c3715SXin Li x[jx] *= a[kplus1 + j * a_dim1];
274*bf2c3715SXin Li }
275*bf2c3715SXin Li }
276*bf2c3715SXin Li jx += *incx;
277*bf2c3715SXin Li if (j > *k) {
278*bf2c3715SXin Li kx += *incx;
279*bf2c3715SXin Li }
280*bf2c3715SXin Li /* L40: */
281*bf2c3715SXin Li }
282*bf2c3715SXin Li }
283*bf2c3715SXin Li } else {
284*bf2c3715SXin Li if (*incx == 1) {
285*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
286*bf2c3715SXin Li if (x[j] != 0.f) {
287*bf2c3715SXin Li temp = x[j];
288*bf2c3715SXin Li l = 1 - j;
289*bf2c3715SXin Li /* Computing MIN */
290*bf2c3715SXin Li i__1 = *n, i__3 = j + *k;
291*bf2c3715SXin Li i__4 = j + 1;
292*bf2c3715SXin Li for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
293*bf2c3715SXin Li x[i__] += temp * a[l + i__ + j * a_dim1];
294*bf2c3715SXin Li /* L50: */
295*bf2c3715SXin Li }
296*bf2c3715SXin Li if (nounit) {
297*bf2c3715SXin Li x[j] *= a[j * a_dim1 + 1];
298*bf2c3715SXin Li }
299*bf2c3715SXin Li }
300*bf2c3715SXin Li /* L60: */
301*bf2c3715SXin Li }
302*bf2c3715SXin Li } else {
303*bf2c3715SXin Li kx += (*n - 1) * *incx;
304*bf2c3715SXin Li jx = kx;
305*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
306*bf2c3715SXin Li if (x[jx] != 0.f) {
307*bf2c3715SXin Li temp = x[jx];
308*bf2c3715SXin Li ix = kx;
309*bf2c3715SXin Li l = 1 - j;
310*bf2c3715SXin Li /* Computing MIN */
311*bf2c3715SXin Li i__4 = *n, i__1 = j + *k;
312*bf2c3715SXin Li i__3 = j + 1;
313*bf2c3715SXin Li for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
314*bf2c3715SXin Li x[ix] += temp * a[l + i__ + j * a_dim1];
315*bf2c3715SXin Li ix -= *incx;
316*bf2c3715SXin Li /* L70: */
317*bf2c3715SXin Li }
318*bf2c3715SXin Li if (nounit) {
319*bf2c3715SXin Li x[jx] *= a[j * a_dim1 + 1];
320*bf2c3715SXin Li }
321*bf2c3715SXin Li }
322*bf2c3715SXin Li jx -= *incx;
323*bf2c3715SXin Li if (*n - j >= *k) {
324*bf2c3715SXin Li kx -= *incx;
325*bf2c3715SXin Li }
326*bf2c3715SXin Li /* L80: */
327*bf2c3715SXin Li }
328*bf2c3715SXin Li }
329*bf2c3715SXin Li }
330*bf2c3715SXin Li } else {
331*bf2c3715SXin Li
332*bf2c3715SXin Li /* Form x := A'*x. */
333*bf2c3715SXin Li
334*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
335*bf2c3715SXin Li kplus1 = *k + 1;
336*bf2c3715SXin Li if (*incx == 1) {
337*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
338*bf2c3715SXin Li temp = x[j];
339*bf2c3715SXin Li l = kplus1 - j;
340*bf2c3715SXin Li if (nounit) {
341*bf2c3715SXin Li temp *= a[kplus1 + j * a_dim1];
342*bf2c3715SXin Li }
343*bf2c3715SXin Li /* Computing MAX */
344*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
345*bf2c3715SXin Li i__3 = max(i__4,i__1);
346*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
347*bf2c3715SXin Li temp += a[l + i__ + j * a_dim1] * x[i__];
348*bf2c3715SXin Li /* L90: */
349*bf2c3715SXin Li }
350*bf2c3715SXin Li x[j] = temp;
351*bf2c3715SXin Li /* L100: */
352*bf2c3715SXin Li }
353*bf2c3715SXin Li } else {
354*bf2c3715SXin Li kx += (*n - 1) * *incx;
355*bf2c3715SXin Li jx = kx;
356*bf2c3715SXin Li for (j = *n; j >= 1; --j) {
357*bf2c3715SXin Li temp = x[jx];
358*bf2c3715SXin Li kx -= *incx;
359*bf2c3715SXin Li ix = kx;
360*bf2c3715SXin Li l = kplus1 - j;
361*bf2c3715SXin Li if (nounit) {
362*bf2c3715SXin Li temp *= a[kplus1 + j * a_dim1];
363*bf2c3715SXin Li }
364*bf2c3715SXin Li /* Computing MAX */
365*bf2c3715SXin Li i__4 = 1, i__1 = j - *k;
366*bf2c3715SXin Li i__3 = max(i__4,i__1);
367*bf2c3715SXin Li for (i__ = j - 1; i__ >= i__3; --i__) {
368*bf2c3715SXin Li temp += a[l + i__ + j * a_dim1] * x[ix];
369*bf2c3715SXin Li ix -= *incx;
370*bf2c3715SXin Li /* L110: */
371*bf2c3715SXin Li }
372*bf2c3715SXin Li x[jx] = temp;
373*bf2c3715SXin Li jx -= *incx;
374*bf2c3715SXin Li /* L120: */
375*bf2c3715SXin Li }
376*bf2c3715SXin Li }
377*bf2c3715SXin Li } else {
378*bf2c3715SXin Li if (*incx == 1) {
379*bf2c3715SXin Li i__3 = *n;
380*bf2c3715SXin Li for (j = 1; j <= i__3; ++j) {
381*bf2c3715SXin Li temp = x[j];
382*bf2c3715SXin Li l = 1 - j;
383*bf2c3715SXin Li if (nounit) {
384*bf2c3715SXin Li temp *= a[j * a_dim1 + 1];
385*bf2c3715SXin Li }
386*bf2c3715SXin Li /* Computing MIN */
387*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
388*bf2c3715SXin Li i__4 = min(i__1,i__2);
389*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
390*bf2c3715SXin Li temp += a[l + i__ + j * a_dim1] * x[i__];
391*bf2c3715SXin Li /* L130: */
392*bf2c3715SXin Li }
393*bf2c3715SXin Li x[j] = temp;
394*bf2c3715SXin Li /* L140: */
395*bf2c3715SXin Li }
396*bf2c3715SXin Li } else {
397*bf2c3715SXin Li jx = kx;
398*bf2c3715SXin Li i__3 = *n;
399*bf2c3715SXin Li for (j = 1; j <= i__3; ++j) {
400*bf2c3715SXin Li temp = x[jx];
401*bf2c3715SXin Li kx += *incx;
402*bf2c3715SXin Li ix = kx;
403*bf2c3715SXin Li l = 1 - j;
404*bf2c3715SXin Li if (nounit) {
405*bf2c3715SXin Li temp *= a[j * a_dim1 + 1];
406*bf2c3715SXin Li }
407*bf2c3715SXin Li /* Computing MIN */
408*bf2c3715SXin Li i__1 = *n, i__2 = j + *k;
409*bf2c3715SXin Li i__4 = min(i__1,i__2);
410*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__4; ++i__) {
411*bf2c3715SXin Li temp += a[l + i__ + j * a_dim1] * x[ix];
412*bf2c3715SXin Li ix += *incx;
413*bf2c3715SXin Li /* L150: */
414*bf2c3715SXin Li }
415*bf2c3715SXin Li x[jx] = temp;
416*bf2c3715SXin Li jx += *incx;
417*bf2c3715SXin Li /* L160: */
418*bf2c3715SXin Li }
419*bf2c3715SXin Li }
420*bf2c3715SXin Li }
421*bf2c3715SXin Li }
422*bf2c3715SXin Li
423*bf2c3715SXin Li return 0;
424*bf2c3715SXin Li
425*bf2c3715SXin Li /* End of STBMV . */
426*bf2c3715SXin Li
427*bf2c3715SXin Li } /* stbmv_ */
428*bf2c3715SXin Li
429