1*bf2c3715SXin Li /* ssbmv.f -- translated by f2c (version 20100827).
2*bf2c3715SXin Li You must link the resulting object file with libf2c:
3*bf2c3715SXin Li on Microsoft Windows system, link with libf2c.lib;
4*bf2c3715SXin Li on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5*bf2c3715SXin Li or, if you install libf2c.a in a standard place, with -lf2c -lm
6*bf2c3715SXin Li -- in that order, at the end of the command line, as in
7*bf2c3715SXin Li cc *.o -lf2c -lm
8*bf2c3715SXin Li Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9*bf2c3715SXin Li
10*bf2c3715SXin Li http://www.netlib.org/f2c/libf2c.zip
11*bf2c3715SXin Li */
12*bf2c3715SXin Li
13*bf2c3715SXin Li #include "datatypes.h"
14*bf2c3715SXin Li
ssbmv_(char * uplo,integer * n,integer * k,real * alpha,real * a,integer * lda,real * x,integer * incx,real * beta,real * y,integer * incy,ftnlen uplo_len)15*bf2c3715SXin Li /* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
16*bf2c3715SXin Li real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
17*bf2c3715SXin Li integer *incy, ftnlen uplo_len)
18*bf2c3715SXin Li {
19*bf2c3715SXin Li /* System generated locals */
20*bf2c3715SXin Li integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
21*bf2c3715SXin Li
22*bf2c3715SXin Li /* Local variables */
23*bf2c3715SXin Li integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
24*bf2c3715SXin Li real temp1, temp2;
25*bf2c3715SXin Li extern logical lsame_(char *, char *, ftnlen, ftnlen);
26*bf2c3715SXin Li integer kplus1;
27*bf2c3715SXin Li extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
28*bf2c3715SXin Li
29*bf2c3715SXin Li /* .. Scalar Arguments .. */
30*bf2c3715SXin Li /* .. */
31*bf2c3715SXin Li /* .. Array Arguments .. */
32*bf2c3715SXin Li /* .. */
33*bf2c3715SXin Li
34*bf2c3715SXin Li /* Purpose */
35*bf2c3715SXin Li /* ======= */
36*bf2c3715SXin Li
37*bf2c3715SXin Li /* SSBMV performs the matrix-vector operation */
38*bf2c3715SXin Li
39*bf2c3715SXin Li /* y := alpha*A*x + beta*y, */
40*bf2c3715SXin Li
41*bf2c3715SXin Li /* where alpha and beta are scalars, x and y are n element vectors and */
42*bf2c3715SXin Li /* A is an n by n symmetric band matrix, with k super-diagonals. */
43*bf2c3715SXin Li
44*bf2c3715SXin Li /* Arguments */
45*bf2c3715SXin Li /* ========== */
46*bf2c3715SXin Li
47*bf2c3715SXin Li /* UPLO - CHARACTER*1. */
48*bf2c3715SXin Li /* On entry, UPLO specifies whether the upper or lower */
49*bf2c3715SXin Li /* triangular part of the band matrix A is being supplied as */
50*bf2c3715SXin Li /* follows: */
51*bf2c3715SXin Li
52*bf2c3715SXin Li /* UPLO = 'U' or 'u' The upper triangular part of A is */
53*bf2c3715SXin Li /* being supplied. */
54*bf2c3715SXin Li
55*bf2c3715SXin Li /* UPLO = 'L' or 'l' The lower triangular part of A is */
56*bf2c3715SXin Li /* being supplied. */
57*bf2c3715SXin Li
58*bf2c3715SXin Li /* Unchanged on exit. */
59*bf2c3715SXin Li
60*bf2c3715SXin Li /* N - INTEGER. */
61*bf2c3715SXin Li /* On entry, N specifies the order of the matrix A. */
62*bf2c3715SXin Li /* N must be at least zero. */
63*bf2c3715SXin Li /* Unchanged on exit. */
64*bf2c3715SXin Li
65*bf2c3715SXin Li /* K - INTEGER. */
66*bf2c3715SXin Li /* On entry, K specifies the number of super-diagonals of the */
67*bf2c3715SXin Li /* matrix A. K must satisfy 0 .le. K. */
68*bf2c3715SXin Li /* Unchanged on exit. */
69*bf2c3715SXin Li
70*bf2c3715SXin Li /* ALPHA - REAL . */
71*bf2c3715SXin Li /* On entry, ALPHA specifies the scalar alpha. */
72*bf2c3715SXin Li /* Unchanged on exit. */
73*bf2c3715SXin Li
74*bf2c3715SXin Li /* A - REAL array of DIMENSION ( LDA, n ). */
75*bf2c3715SXin Li /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
76*bf2c3715SXin Li /* by n part of the array A must contain the upper triangular */
77*bf2c3715SXin Li /* band part of the symmetric matrix, supplied column by */
78*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row */
79*bf2c3715SXin Li /* ( k + 1 ) of the array, the first super-diagonal starting at */
80*bf2c3715SXin Li /* position 2 in row k, and so on. The top left k by k triangle */
81*bf2c3715SXin Li /* of the array A is not referenced. */
82*bf2c3715SXin Li /* The following program segment will transfer the upper */
83*bf2c3715SXin Li /* triangular part of a symmetric band matrix from conventional */
84*bf2c3715SXin Li /* full matrix storage to band storage: */
85*bf2c3715SXin Li
86*bf2c3715SXin Li /* DO 20, J = 1, N */
87*bf2c3715SXin Li /* M = K + 1 - J */
88*bf2c3715SXin Li /* DO 10, I = MAX( 1, J - K ), J */
89*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
90*bf2c3715SXin Li /* 10 CONTINUE */
91*bf2c3715SXin Li /* 20 CONTINUE */
92*bf2c3715SXin Li
93*bf2c3715SXin Li /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
94*bf2c3715SXin Li /* by n part of the array A must contain the lower triangular */
95*bf2c3715SXin Li /* band part of the symmetric matrix, supplied column by */
96*bf2c3715SXin Li /* column, with the leading diagonal of the matrix in row 1 of */
97*bf2c3715SXin Li /* the array, the first sub-diagonal starting at position 1 in */
98*bf2c3715SXin Li /* row 2, and so on. The bottom right k by k triangle of the */
99*bf2c3715SXin Li /* array A is not referenced. */
100*bf2c3715SXin Li /* The following program segment will transfer the lower */
101*bf2c3715SXin Li /* triangular part of a symmetric band matrix from conventional */
102*bf2c3715SXin Li /* full matrix storage to band storage: */
103*bf2c3715SXin Li
104*bf2c3715SXin Li /* DO 20, J = 1, N */
105*bf2c3715SXin Li /* M = 1 - J */
106*bf2c3715SXin Li /* DO 10, I = J, MIN( N, J + K ) */
107*bf2c3715SXin Li /* A( M + I, J ) = matrix( I, J ) */
108*bf2c3715SXin Li /* 10 CONTINUE */
109*bf2c3715SXin Li /* 20 CONTINUE */
110*bf2c3715SXin Li
111*bf2c3715SXin Li /* Unchanged on exit. */
112*bf2c3715SXin Li
113*bf2c3715SXin Li /* LDA - INTEGER. */
114*bf2c3715SXin Li /* On entry, LDA specifies the first dimension of A as declared */
115*bf2c3715SXin Li /* in the calling (sub) program. LDA must be at least */
116*bf2c3715SXin Li /* ( k + 1 ). */
117*bf2c3715SXin Li /* Unchanged on exit. */
118*bf2c3715SXin Li
119*bf2c3715SXin Li /* X - REAL array of DIMENSION at least */
120*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCX ) ). */
121*bf2c3715SXin Li /* Before entry, the incremented array X must contain the */
122*bf2c3715SXin Li /* vector x. */
123*bf2c3715SXin Li /* Unchanged on exit. */
124*bf2c3715SXin Li
125*bf2c3715SXin Li /* INCX - INTEGER. */
126*bf2c3715SXin Li /* On entry, INCX specifies the increment for the elements of */
127*bf2c3715SXin Li /* X. INCX must not be zero. */
128*bf2c3715SXin Li /* Unchanged on exit. */
129*bf2c3715SXin Li
130*bf2c3715SXin Li /* BETA - REAL . */
131*bf2c3715SXin Li /* On entry, BETA specifies the scalar beta. */
132*bf2c3715SXin Li /* Unchanged on exit. */
133*bf2c3715SXin Li
134*bf2c3715SXin Li /* Y - REAL array of DIMENSION at least */
135*bf2c3715SXin Li /* ( 1 + ( n - 1 )*abs( INCY ) ). */
136*bf2c3715SXin Li /* Before entry, the incremented array Y must contain the */
137*bf2c3715SXin Li /* vector y. On exit, Y is overwritten by the updated vector y. */
138*bf2c3715SXin Li
139*bf2c3715SXin Li /* INCY - INTEGER. */
140*bf2c3715SXin Li /* On entry, INCY specifies the increment for the elements of */
141*bf2c3715SXin Li /* Y. INCY must not be zero. */
142*bf2c3715SXin Li /* Unchanged on exit. */
143*bf2c3715SXin Li
144*bf2c3715SXin Li /* Further Details */
145*bf2c3715SXin Li /* =============== */
146*bf2c3715SXin Li
147*bf2c3715SXin Li /* Level 2 Blas routine. */
148*bf2c3715SXin Li
149*bf2c3715SXin Li /* -- Written on 22-October-1986. */
150*bf2c3715SXin Li /* Jack Dongarra, Argonne National Lab. */
151*bf2c3715SXin Li /* Jeremy Du Croz, Nag Central Office. */
152*bf2c3715SXin Li /* Sven Hammarling, Nag Central Office. */
153*bf2c3715SXin Li /* Richard Hanson, Sandia National Labs. */
154*bf2c3715SXin Li
155*bf2c3715SXin Li /* ===================================================================== */
156*bf2c3715SXin Li
157*bf2c3715SXin Li /* .. Parameters .. */
158*bf2c3715SXin Li /* .. */
159*bf2c3715SXin Li /* .. Local Scalars .. */
160*bf2c3715SXin Li /* .. */
161*bf2c3715SXin Li /* .. External Functions .. */
162*bf2c3715SXin Li /* .. */
163*bf2c3715SXin Li /* .. External Subroutines .. */
164*bf2c3715SXin Li /* .. */
165*bf2c3715SXin Li /* .. Intrinsic Functions .. */
166*bf2c3715SXin Li /* .. */
167*bf2c3715SXin Li
168*bf2c3715SXin Li /* Test the input parameters. */
169*bf2c3715SXin Li
170*bf2c3715SXin Li /* Parameter adjustments */
171*bf2c3715SXin Li a_dim1 = *lda;
172*bf2c3715SXin Li a_offset = 1 + a_dim1;
173*bf2c3715SXin Li a -= a_offset;
174*bf2c3715SXin Li --x;
175*bf2c3715SXin Li --y;
176*bf2c3715SXin Li
177*bf2c3715SXin Li /* Function Body */
178*bf2c3715SXin Li info = 0;
179*bf2c3715SXin Li if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
180*bf2c3715SXin Li ftnlen)1, (ftnlen)1)) {
181*bf2c3715SXin Li info = 1;
182*bf2c3715SXin Li } else if (*n < 0) {
183*bf2c3715SXin Li info = 2;
184*bf2c3715SXin Li } else if (*k < 0) {
185*bf2c3715SXin Li info = 3;
186*bf2c3715SXin Li } else if (*lda < *k + 1) {
187*bf2c3715SXin Li info = 6;
188*bf2c3715SXin Li } else if (*incx == 0) {
189*bf2c3715SXin Li info = 8;
190*bf2c3715SXin Li } else if (*incy == 0) {
191*bf2c3715SXin Li info = 11;
192*bf2c3715SXin Li }
193*bf2c3715SXin Li if (info != 0) {
194*bf2c3715SXin Li xerbla_("SSBMV ", &info, (ftnlen)6);
195*bf2c3715SXin Li return 0;
196*bf2c3715SXin Li }
197*bf2c3715SXin Li
198*bf2c3715SXin Li /* Quick return if possible. */
199*bf2c3715SXin Li
200*bf2c3715SXin Li if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
201*bf2c3715SXin Li return 0;
202*bf2c3715SXin Li }
203*bf2c3715SXin Li
204*bf2c3715SXin Li /* Set up the start points in X and Y. */
205*bf2c3715SXin Li
206*bf2c3715SXin Li if (*incx > 0) {
207*bf2c3715SXin Li kx = 1;
208*bf2c3715SXin Li } else {
209*bf2c3715SXin Li kx = 1 - (*n - 1) * *incx;
210*bf2c3715SXin Li }
211*bf2c3715SXin Li if (*incy > 0) {
212*bf2c3715SXin Li ky = 1;
213*bf2c3715SXin Li } else {
214*bf2c3715SXin Li ky = 1 - (*n - 1) * *incy;
215*bf2c3715SXin Li }
216*bf2c3715SXin Li
217*bf2c3715SXin Li /* Start the operations. In this version the elements of the array A */
218*bf2c3715SXin Li /* are accessed sequentially with one pass through A. */
219*bf2c3715SXin Li
220*bf2c3715SXin Li /* First form y := beta*y. */
221*bf2c3715SXin Li
222*bf2c3715SXin Li if (*beta != 1.f) {
223*bf2c3715SXin Li if (*incy == 1) {
224*bf2c3715SXin Li if (*beta == 0.f) {
225*bf2c3715SXin Li i__1 = *n;
226*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
227*bf2c3715SXin Li y[i__] = 0.f;
228*bf2c3715SXin Li /* L10: */
229*bf2c3715SXin Li }
230*bf2c3715SXin Li } else {
231*bf2c3715SXin Li i__1 = *n;
232*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
233*bf2c3715SXin Li y[i__] = *beta * y[i__];
234*bf2c3715SXin Li /* L20: */
235*bf2c3715SXin Li }
236*bf2c3715SXin Li }
237*bf2c3715SXin Li } else {
238*bf2c3715SXin Li iy = ky;
239*bf2c3715SXin Li if (*beta == 0.f) {
240*bf2c3715SXin Li i__1 = *n;
241*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
242*bf2c3715SXin Li y[iy] = 0.f;
243*bf2c3715SXin Li iy += *incy;
244*bf2c3715SXin Li /* L30: */
245*bf2c3715SXin Li }
246*bf2c3715SXin Li } else {
247*bf2c3715SXin Li i__1 = *n;
248*bf2c3715SXin Li for (i__ = 1; i__ <= i__1; ++i__) {
249*bf2c3715SXin Li y[iy] = *beta * y[iy];
250*bf2c3715SXin Li iy += *incy;
251*bf2c3715SXin Li /* L40: */
252*bf2c3715SXin Li }
253*bf2c3715SXin Li }
254*bf2c3715SXin Li }
255*bf2c3715SXin Li }
256*bf2c3715SXin Li if (*alpha == 0.f) {
257*bf2c3715SXin Li return 0;
258*bf2c3715SXin Li }
259*bf2c3715SXin Li if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
260*bf2c3715SXin Li
261*bf2c3715SXin Li /* Form y when upper triangle of A is stored. */
262*bf2c3715SXin Li
263*bf2c3715SXin Li kplus1 = *k + 1;
264*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
265*bf2c3715SXin Li i__1 = *n;
266*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
267*bf2c3715SXin Li temp1 = *alpha * x[j];
268*bf2c3715SXin Li temp2 = 0.f;
269*bf2c3715SXin Li l = kplus1 - j;
270*bf2c3715SXin Li /* Computing MAX */
271*bf2c3715SXin Li i__2 = 1, i__3 = j - *k;
272*bf2c3715SXin Li i__4 = j - 1;
273*bf2c3715SXin Li for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
274*bf2c3715SXin Li y[i__] += temp1 * a[l + i__ + j * a_dim1];
275*bf2c3715SXin Li temp2 += a[l + i__ + j * a_dim1] * x[i__];
276*bf2c3715SXin Li /* L50: */
277*bf2c3715SXin Li }
278*bf2c3715SXin Li y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
279*bf2c3715SXin Li /* L60: */
280*bf2c3715SXin Li }
281*bf2c3715SXin Li } else {
282*bf2c3715SXin Li jx = kx;
283*bf2c3715SXin Li jy = ky;
284*bf2c3715SXin Li i__1 = *n;
285*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
286*bf2c3715SXin Li temp1 = *alpha * x[jx];
287*bf2c3715SXin Li temp2 = 0.f;
288*bf2c3715SXin Li ix = kx;
289*bf2c3715SXin Li iy = ky;
290*bf2c3715SXin Li l = kplus1 - j;
291*bf2c3715SXin Li /* Computing MAX */
292*bf2c3715SXin Li i__4 = 1, i__2 = j - *k;
293*bf2c3715SXin Li i__3 = j - 1;
294*bf2c3715SXin Li for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
295*bf2c3715SXin Li y[iy] += temp1 * a[l + i__ + j * a_dim1];
296*bf2c3715SXin Li temp2 += a[l + i__ + j * a_dim1] * x[ix];
297*bf2c3715SXin Li ix += *incx;
298*bf2c3715SXin Li iy += *incy;
299*bf2c3715SXin Li /* L70: */
300*bf2c3715SXin Li }
301*bf2c3715SXin Li y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
302*bf2c3715SXin Li temp2;
303*bf2c3715SXin Li jx += *incx;
304*bf2c3715SXin Li jy += *incy;
305*bf2c3715SXin Li if (j > *k) {
306*bf2c3715SXin Li kx += *incx;
307*bf2c3715SXin Li ky += *incy;
308*bf2c3715SXin Li }
309*bf2c3715SXin Li /* L80: */
310*bf2c3715SXin Li }
311*bf2c3715SXin Li }
312*bf2c3715SXin Li } else {
313*bf2c3715SXin Li
314*bf2c3715SXin Li /* Form y when lower triangle of A is stored. */
315*bf2c3715SXin Li
316*bf2c3715SXin Li if (*incx == 1 && *incy == 1) {
317*bf2c3715SXin Li i__1 = *n;
318*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
319*bf2c3715SXin Li temp1 = *alpha * x[j];
320*bf2c3715SXin Li temp2 = 0.f;
321*bf2c3715SXin Li y[j] += temp1 * a[j * a_dim1 + 1];
322*bf2c3715SXin Li l = 1 - j;
323*bf2c3715SXin Li /* Computing MIN */
324*bf2c3715SXin Li i__4 = *n, i__2 = j + *k;
325*bf2c3715SXin Li i__3 = min(i__4,i__2);
326*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__3; ++i__) {
327*bf2c3715SXin Li y[i__] += temp1 * a[l + i__ + j * a_dim1];
328*bf2c3715SXin Li temp2 += a[l + i__ + j * a_dim1] * x[i__];
329*bf2c3715SXin Li /* L90: */
330*bf2c3715SXin Li }
331*bf2c3715SXin Li y[j] += *alpha * temp2;
332*bf2c3715SXin Li /* L100: */
333*bf2c3715SXin Li }
334*bf2c3715SXin Li } else {
335*bf2c3715SXin Li jx = kx;
336*bf2c3715SXin Li jy = ky;
337*bf2c3715SXin Li i__1 = *n;
338*bf2c3715SXin Li for (j = 1; j <= i__1; ++j) {
339*bf2c3715SXin Li temp1 = *alpha * x[jx];
340*bf2c3715SXin Li temp2 = 0.f;
341*bf2c3715SXin Li y[jy] += temp1 * a[j * a_dim1 + 1];
342*bf2c3715SXin Li l = 1 - j;
343*bf2c3715SXin Li ix = jx;
344*bf2c3715SXin Li iy = jy;
345*bf2c3715SXin Li /* Computing MIN */
346*bf2c3715SXin Li i__4 = *n, i__2 = j + *k;
347*bf2c3715SXin Li i__3 = min(i__4,i__2);
348*bf2c3715SXin Li for (i__ = j + 1; i__ <= i__3; ++i__) {
349*bf2c3715SXin Li ix += *incx;
350*bf2c3715SXin Li iy += *incy;
351*bf2c3715SXin Li y[iy] += temp1 * a[l + i__ + j * a_dim1];
352*bf2c3715SXin Li temp2 += a[l + i__ + j * a_dim1] * x[ix];
353*bf2c3715SXin Li /* L110: */
354*bf2c3715SXin Li }
355*bf2c3715SXin Li y[jy] += *alpha * temp2;
356*bf2c3715SXin Li jx += *incx;
357*bf2c3715SXin Li jy += *incy;
358*bf2c3715SXin Li /* L120: */
359*bf2c3715SXin Li }
360*bf2c3715SXin Li }
361*bf2c3715SXin Li }
362*bf2c3715SXin Li
363*bf2c3715SXin Li return 0;
364*bf2c3715SXin Li
365*bf2c3715SXin Li /* End of SSBMV . */
366*bf2c3715SXin Li
367*bf2c3715SXin Li } /* ssbmv_ */
368*bf2c3715SXin Li
369