1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2008-2012 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li /*
11*bf2c3715SXin Li NOTE: these functions have been adapted from the LDL library:
12*bf2c3715SXin Li
13*bf2c3715SXin Li LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
14*bf2c3715SXin Li
15*bf2c3715SXin Li The author of LDL, Timothy A. Davis., has executed a license with Google LLC
16*bf2c3715SXin Li to permit distribution of this code and derivative works as part of Eigen under
17*bf2c3715SXin Li the Mozilla Public License v. 2.0, as stated at the top of this file.
18*bf2c3715SXin Li */
19*bf2c3715SXin Li
20*bf2c3715SXin Li #ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
21*bf2c3715SXin Li #define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
22*bf2c3715SXin Li
23*bf2c3715SXin Li namespace Eigen {
24*bf2c3715SXin Li
25*bf2c3715SXin Li template<typename Derived>
analyzePattern_preordered(const CholMatrixType & ap,bool doLDLT)26*bf2c3715SXin Li void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT)
27*bf2c3715SXin Li {
28*bf2c3715SXin Li const StorageIndex size = StorageIndex(ap.rows());
29*bf2c3715SXin Li m_matrix.resize(size, size);
30*bf2c3715SXin Li m_parent.resize(size);
31*bf2c3715SXin Li m_nonZerosPerCol.resize(size);
32*bf2c3715SXin Li
33*bf2c3715SXin Li ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
34*bf2c3715SXin Li
35*bf2c3715SXin Li for(StorageIndex k = 0; k < size; ++k)
36*bf2c3715SXin Li {
37*bf2c3715SXin Li /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
38*bf2c3715SXin Li m_parent[k] = -1; /* parent of k is not yet known */
39*bf2c3715SXin Li tags[k] = k; /* mark node k as visited */
40*bf2c3715SXin Li m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
41*bf2c3715SXin Li for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
42*bf2c3715SXin Li {
43*bf2c3715SXin Li StorageIndex i = it.index();
44*bf2c3715SXin Li if(i < k)
45*bf2c3715SXin Li {
46*bf2c3715SXin Li /* follow path from i to root of etree, stop at flagged node */
47*bf2c3715SXin Li for(; tags[i] != k; i = m_parent[i])
48*bf2c3715SXin Li {
49*bf2c3715SXin Li /* find parent of i if not yet determined */
50*bf2c3715SXin Li if (m_parent[i] == -1)
51*bf2c3715SXin Li m_parent[i] = k;
52*bf2c3715SXin Li m_nonZerosPerCol[i]++; /* L (k,i) is nonzero */
53*bf2c3715SXin Li tags[i] = k; /* mark i as visited */
54*bf2c3715SXin Li }
55*bf2c3715SXin Li }
56*bf2c3715SXin Li }
57*bf2c3715SXin Li }
58*bf2c3715SXin Li
59*bf2c3715SXin Li /* construct Lp index array from m_nonZerosPerCol column counts */
60*bf2c3715SXin Li StorageIndex* Lp = m_matrix.outerIndexPtr();
61*bf2c3715SXin Li Lp[0] = 0;
62*bf2c3715SXin Li for(StorageIndex k = 0; k < size; ++k)
63*bf2c3715SXin Li Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1);
64*bf2c3715SXin Li
65*bf2c3715SXin Li m_matrix.resizeNonZeros(Lp[size]);
66*bf2c3715SXin Li
67*bf2c3715SXin Li m_isInitialized = true;
68*bf2c3715SXin Li m_info = Success;
69*bf2c3715SXin Li m_analysisIsOk = true;
70*bf2c3715SXin Li m_factorizationIsOk = false;
71*bf2c3715SXin Li }
72*bf2c3715SXin Li
73*bf2c3715SXin Li
74*bf2c3715SXin Li template<typename Derived>
75*bf2c3715SXin Li template<bool DoLDLT>
factorize_preordered(const CholMatrixType & ap)76*bf2c3715SXin Li void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap)
77*bf2c3715SXin Li {
78*bf2c3715SXin Li using std::sqrt;
79*bf2c3715SXin Li
80*bf2c3715SXin Li eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
81*bf2c3715SXin Li eigen_assert(ap.rows()==ap.cols());
82*bf2c3715SXin Li eigen_assert(m_parent.size()==ap.rows());
83*bf2c3715SXin Li eigen_assert(m_nonZerosPerCol.size()==ap.rows());
84*bf2c3715SXin Li
85*bf2c3715SXin Li const StorageIndex size = StorageIndex(ap.rows());
86*bf2c3715SXin Li const StorageIndex* Lp = m_matrix.outerIndexPtr();
87*bf2c3715SXin Li StorageIndex* Li = m_matrix.innerIndexPtr();
88*bf2c3715SXin Li Scalar* Lx = m_matrix.valuePtr();
89*bf2c3715SXin Li
90*bf2c3715SXin Li ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0);
91*bf2c3715SXin Li ei_declare_aligned_stack_constructed_variable(StorageIndex, pattern, size, 0);
92*bf2c3715SXin Li ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0);
93*bf2c3715SXin Li
94*bf2c3715SXin Li bool ok = true;
95*bf2c3715SXin Li m_diag.resize(DoLDLT ? size : 0);
96*bf2c3715SXin Li
97*bf2c3715SXin Li for(StorageIndex k = 0; k < size; ++k)
98*bf2c3715SXin Li {
99*bf2c3715SXin Li // compute nonzero pattern of kth row of L, in topological order
100*bf2c3715SXin Li y[k] = Scalar(0); // Y(0:k) is now all zero
101*bf2c3715SXin Li StorageIndex top = size; // stack for pattern is empty
102*bf2c3715SXin Li tags[k] = k; // mark node k as visited
103*bf2c3715SXin Li m_nonZerosPerCol[k] = 0; // count of nonzeros in column k of L
104*bf2c3715SXin Li for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it)
105*bf2c3715SXin Li {
106*bf2c3715SXin Li StorageIndex i = it.index();
107*bf2c3715SXin Li if(i <= k)
108*bf2c3715SXin Li {
109*bf2c3715SXin Li y[i] += numext::conj(it.value()); /* scatter A(i,k) into Y (sum duplicates) */
110*bf2c3715SXin Li Index len;
111*bf2c3715SXin Li for(len = 0; tags[i] != k; i = m_parent[i])
112*bf2c3715SXin Li {
113*bf2c3715SXin Li pattern[len++] = i; /* L(k,i) is nonzero */
114*bf2c3715SXin Li tags[i] = k; /* mark i as visited */
115*bf2c3715SXin Li }
116*bf2c3715SXin Li while(len > 0)
117*bf2c3715SXin Li pattern[--top] = pattern[--len];
118*bf2c3715SXin Li }
119*bf2c3715SXin Li }
120*bf2c3715SXin Li
121*bf2c3715SXin Li /* compute numerical values kth row of L (a sparse triangular solve) */
122*bf2c3715SXin Li
123*bf2c3715SXin Li RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset; // get D(k,k), apply the shift function, and clear Y(k)
124*bf2c3715SXin Li y[k] = Scalar(0);
125*bf2c3715SXin Li for(; top < size; ++top)
126*bf2c3715SXin Li {
127*bf2c3715SXin Li Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
128*bf2c3715SXin Li Scalar yi = y[i]; /* get and clear Y(i) */
129*bf2c3715SXin Li y[i] = Scalar(0);
130*bf2c3715SXin Li
131*bf2c3715SXin Li /* the nonzero entry L(k,i) */
132*bf2c3715SXin Li Scalar l_ki;
133*bf2c3715SXin Li if(DoLDLT)
134*bf2c3715SXin Li l_ki = yi / numext::real(m_diag[i]);
135*bf2c3715SXin Li else
136*bf2c3715SXin Li yi = l_ki = yi / Lx[Lp[i]];
137*bf2c3715SXin Li
138*bf2c3715SXin Li Index p2 = Lp[i] + m_nonZerosPerCol[i];
139*bf2c3715SXin Li Index p;
140*bf2c3715SXin Li for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p)
141*bf2c3715SXin Li y[Li[p]] -= numext::conj(Lx[p]) * yi;
142*bf2c3715SXin Li d -= numext::real(l_ki * numext::conj(yi));
143*bf2c3715SXin Li Li[p] = k; /* store L(k,i) in column form of L */
144*bf2c3715SXin Li Lx[p] = l_ki;
145*bf2c3715SXin Li ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
146*bf2c3715SXin Li }
147*bf2c3715SXin Li if(DoLDLT)
148*bf2c3715SXin Li {
149*bf2c3715SXin Li m_diag[k] = d;
150*bf2c3715SXin Li if(d == RealScalar(0))
151*bf2c3715SXin Li {
152*bf2c3715SXin Li ok = false; /* failure, D(k,k) is zero */
153*bf2c3715SXin Li break;
154*bf2c3715SXin Li }
155*bf2c3715SXin Li }
156*bf2c3715SXin Li else
157*bf2c3715SXin Li {
158*bf2c3715SXin Li Index p = Lp[k] + m_nonZerosPerCol[k]++;
159*bf2c3715SXin Li Li[p] = k ; /* store L(k,k) = sqrt (d) in column k */
160*bf2c3715SXin Li if(d <= RealScalar(0)) {
161*bf2c3715SXin Li ok = false; /* failure, matrix is not positive definite */
162*bf2c3715SXin Li break;
163*bf2c3715SXin Li }
164*bf2c3715SXin Li Lx[p] = sqrt(d) ;
165*bf2c3715SXin Li }
166*bf2c3715SXin Li }
167*bf2c3715SXin Li
168*bf2c3715SXin Li m_info = ok ? Success : NumericalIssue;
169*bf2c3715SXin Li m_factorizationIsOk = true;
170*bf2c3715SXin Li }
171*bf2c3715SXin Li
172*bf2c3715SXin Li } // end namespace Eigen
173*bf2c3715SXin Li
174*bf2c3715SXin Li #endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H
175