1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2010 Gael Guennebaud <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li
10*bf2c3715SXin Li /*
11*bf2c3715SXin Li NOTE: this routine has been adapted from the CSparse library:
12*bf2c3715SXin Li
13*bf2c3715SXin Li Copyright (c) 2006, Timothy A. Davis.
14*bf2c3715SXin Li http://www.suitesparse.com
15*bf2c3715SXin Li
16*bf2c3715SXin Li The author of CSparse, Timothy A. Davis., has executed a license with Google LLC
17*bf2c3715SXin Li to permit distribution of this code and derivative works as part of Eigen under
18*bf2c3715SXin Li the Mozilla Public License v. 2.0, as stated at the top of this file.
19*bf2c3715SXin Li */
20*bf2c3715SXin Li
21*bf2c3715SXin Li #ifndef EIGEN_SPARSE_AMD_H
22*bf2c3715SXin Li #define EIGEN_SPARSE_AMD_H
23*bf2c3715SXin Li
24*bf2c3715SXin Li namespace Eigen {
25*bf2c3715SXin Li
26*bf2c3715SXin Li namespace internal {
27*bf2c3715SXin Li
amd_flip(const T & i)28*bf2c3715SXin Li template<typename T> inline T amd_flip(const T& i) { return -i-2; }
amd_unflip(const T & i)29*bf2c3715SXin Li template<typename T> inline T amd_unflip(const T& i) { return i<0 ? amd_flip(i) : i; }
amd_marked(const T0 * w,const T1 & j)30*bf2c3715SXin Li template<typename T0, typename T1> inline bool amd_marked(const T0* w, const T1& j) { return w[j]<0; }
amd_mark(const T0 * w,const T1 & j)31*bf2c3715SXin Li template<typename T0, typename T1> inline void amd_mark(const T0* w, const T1& j) { return w[j] = amd_flip(w[j]); }
32*bf2c3715SXin Li
33*bf2c3715SXin Li /* clear w */
34*bf2c3715SXin Li template<typename StorageIndex>
cs_wclear(StorageIndex mark,StorageIndex lemax,StorageIndex * w,StorageIndex n)35*bf2c3715SXin Li static StorageIndex cs_wclear (StorageIndex mark, StorageIndex lemax, StorageIndex *w, StorageIndex n)
36*bf2c3715SXin Li {
37*bf2c3715SXin Li StorageIndex k;
38*bf2c3715SXin Li if(mark < 2 || (mark + lemax < 0))
39*bf2c3715SXin Li {
40*bf2c3715SXin Li for(k = 0; k < n; k++)
41*bf2c3715SXin Li if(w[k] != 0)
42*bf2c3715SXin Li w[k] = 1;
43*bf2c3715SXin Li mark = 2;
44*bf2c3715SXin Li }
45*bf2c3715SXin Li return (mark); /* at this point, w[0..n-1] < mark holds */
46*bf2c3715SXin Li }
47*bf2c3715SXin Li
48*bf2c3715SXin Li /* depth-first search and postorder of a tree rooted at node j */
49*bf2c3715SXin Li template<typename StorageIndex>
cs_tdfs(StorageIndex j,StorageIndex k,StorageIndex * head,const StorageIndex * next,StorageIndex * post,StorageIndex * stack)50*bf2c3715SXin Li StorageIndex cs_tdfs(StorageIndex j, StorageIndex k, StorageIndex *head, const StorageIndex *next, StorageIndex *post, StorageIndex *stack)
51*bf2c3715SXin Li {
52*bf2c3715SXin Li StorageIndex i, p, top = 0;
53*bf2c3715SXin Li if(!head || !next || !post || !stack) return (-1); /* check inputs */
54*bf2c3715SXin Li stack[0] = j; /* place j on the stack */
55*bf2c3715SXin Li while (top >= 0) /* while (stack is not empty) */
56*bf2c3715SXin Li {
57*bf2c3715SXin Li p = stack[top]; /* p = top of stack */
58*bf2c3715SXin Li i = head[p]; /* i = youngest child of p */
59*bf2c3715SXin Li if(i == -1)
60*bf2c3715SXin Li {
61*bf2c3715SXin Li top--; /* p has no unordered children left */
62*bf2c3715SXin Li post[k++] = p; /* node p is the kth postordered node */
63*bf2c3715SXin Li }
64*bf2c3715SXin Li else
65*bf2c3715SXin Li {
66*bf2c3715SXin Li head[p] = next[i]; /* remove i from children of p */
67*bf2c3715SXin Li stack[++top] = i; /* start dfs on child node i */
68*bf2c3715SXin Li }
69*bf2c3715SXin Li }
70*bf2c3715SXin Li return k;
71*bf2c3715SXin Li }
72*bf2c3715SXin Li
73*bf2c3715SXin Li
74*bf2c3715SXin Li /** \internal
75*bf2c3715SXin Li * \ingroup OrderingMethods_Module
76*bf2c3715SXin Li * Approximate minimum degree ordering algorithm.
77*bf2c3715SXin Li *
78*bf2c3715SXin Li * \param[in] C the input selfadjoint matrix stored in compressed column major format.
79*bf2c3715SXin Li * \param[out] perm the permutation P reducing the fill-in of the input matrix \a C
80*bf2c3715SXin Li *
81*bf2c3715SXin Li * Note that the input matrix \a C must be complete, that is both the upper and lower parts have to be stored, as well as the diagonal entries.
82*bf2c3715SXin Li * On exit the values of C are destroyed */
83*bf2c3715SXin Li template<typename Scalar, typename StorageIndex>
minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex> & C,PermutationMatrix<Dynamic,Dynamic,StorageIndex> & perm)84*bf2c3715SXin Li void minimum_degree_ordering(SparseMatrix<Scalar,ColMajor,StorageIndex>& C, PermutationMatrix<Dynamic,Dynamic,StorageIndex>& perm)
85*bf2c3715SXin Li {
86*bf2c3715SXin Li using std::sqrt;
87*bf2c3715SXin Li
88*bf2c3715SXin Li StorageIndex d, dk, dext, lemax = 0, e, elenk, eln, i, j, k, k1,
89*bf2c3715SXin Li k2, k3, jlast, ln, dense, nzmax, mindeg = 0, nvi, nvj, nvk, mark, wnvi,
90*bf2c3715SXin Li ok, nel = 0, p, p1, p2, p3, p4, pj, pk, pk1, pk2, pn, q, t, h;
91*bf2c3715SXin Li
92*bf2c3715SXin Li StorageIndex n = StorageIndex(C.cols());
93*bf2c3715SXin Li dense = std::max<StorageIndex> (16, StorageIndex(10 * sqrt(double(n)))); /* find dense threshold */
94*bf2c3715SXin Li dense = (std::min)(n-2, dense);
95*bf2c3715SXin Li
96*bf2c3715SXin Li StorageIndex cnz = StorageIndex(C.nonZeros());
97*bf2c3715SXin Li perm.resize(n+1);
98*bf2c3715SXin Li t = cnz + cnz/5 + 2*n; /* add elbow room to C */
99*bf2c3715SXin Li C.resizeNonZeros(t);
100*bf2c3715SXin Li
101*bf2c3715SXin Li // get workspace
102*bf2c3715SXin Li ei_declare_aligned_stack_constructed_variable(StorageIndex,W,8*(n+1),0);
103*bf2c3715SXin Li StorageIndex* len = W;
104*bf2c3715SXin Li StorageIndex* nv = W + (n+1);
105*bf2c3715SXin Li StorageIndex* next = W + 2*(n+1);
106*bf2c3715SXin Li StorageIndex* head = W + 3*(n+1);
107*bf2c3715SXin Li StorageIndex* elen = W + 4*(n+1);
108*bf2c3715SXin Li StorageIndex* degree = W + 5*(n+1);
109*bf2c3715SXin Li StorageIndex* w = W + 6*(n+1);
110*bf2c3715SXin Li StorageIndex* hhead = W + 7*(n+1);
111*bf2c3715SXin Li StorageIndex* last = perm.indices().data(); /* use P as workspace for last */
112*bf2c3715SXin Li
113*bf2c3715SXin Li /* --- Initialize quotient graph ---------------------------------------- */
114*bf2c3715SXin Li StorageIndex* Cp = C.outerIndexPtr();
115*bf2c3715SXin Li StorageIndex* Ci = C.innerIndexPtr();
116*bf2c3715SXin Li for(k = 0; k < n; k++)
117*bf2c3715SXin Li len[k] = Cp[k+1] - Cp[k];
118*bf2c3715SXin Li len[n] = 0;
119*bf2c3715SXin Li nzmax = t;
120*bf2c3715SXin Li
121*bf2c3715SXin Li for(i = 0; i <= n; i++)
122*bf2c3715SXin Li {
123*bf2c3715SXin Li head[i] = -1; // degree list i is empty
124*bf2c3715SXin Li last[i] = -1;
125*bf2c3715SXin Li next[i] = -1;
126*bf2c3715SXin Li hhead[i] = -1; // hash list i is empty
127*bf2c3715SXin Li nv[i] = 1; // node i is just one node
128*bf2c3715SXin Li w[i] = 1; // node i is alive
129*bf2c3715SXin Li elen[i] = 0; // Ek of node i is empty
130*bf2c3715SXin Li degree[i] = len[i]; // degree of node i
131*bf2c3715SXin Li }
132*bf2c3715SXin Li mark = internal::cs_wclear<StorageIndex>(0, 0, w, n); /* clear w */
133*bf2c3715SXin Li
134*bf2c3715SXin Li /* --- Initialize degree lists ------------------------------------------ */
135*bf2c3715SXin Li for(i = 0; i < n; i++)
136*bf2c3715SXin Li {
137*bf2c3715SXin Li bool has_diag = false;
138*bf2c3715SXin Li for(p = Cp[i]; p<Cp[i+1]; ++p)
139*bf2c3715SXin Li if(Ci[p]==i)
140*bf2c3715SXin Li {
141*bf2c3715SXin Li has_diag = true;
142*bf2c3715SXin Li break;
143*bf2c3715SXin Li }
144*bf2c3715SXin Li
145*bf2c3715SXin Li d = degree[i];
146*bf2c3715SXin Li if(d == 1 && has_diag) /* node i is empty */
147*bf2c3715SXin Li {
148*bf2c3715SXin Li elen[i] = -2; /* element i is dead */
149*bf2c3715SXin Li nel++;
150*bf2c3715SXin Li Cp[i] = -1; /* i is a root of assembly tree */
151*bf2c3715SXin Li w[i] = 0;
152*bf2c3715SXin Li }
153*bf2c3715SXin Li else if(d > dense || !has_diag) /* node i is dense or has no structural diagonal element */
154*bf2c3715SXin Li {
155*bf2c3715SXin Li nv[i] = 0; /* absorb i into element n */
156*bf2c3715SXin Li elen[i] = -1; /* node i is dead */
157*bf2c3715SXin Li nel++;
158*bf2c3715SXin Li Cp[i] = amd_flip (n);
159*bf2c3715SXin Li nv[n]++;
160*bf2c3715SXin Li }
161*bf2c3715SXin Li else
162*bf2c3715SXin Li {
163*bf2c3715SXin Li if(head[d] != -1) last[head[d]] = i;
164*bf2c3715SXin Li next[i] = head[d]; /* put node i in degree list d */
165*bf2c3715SXin Li head[d] = i;
166*bf2c3715SXin Li }
167*bf2c3715SXin Li }
168*bf2c3715SXin Li
169*bf2c3715SXin Li elen[n] = -2; /* n is a dead element */
170*bf2c3715SXin Li Cp[n] = -1; /* n is a root of assembly tree */
171*bf2c3715SXin Li w[n] = 0; /* n is a dead element */
172*bf2c3715SXin Li
173*bf2c3715SXin Li while (nel < n) /* while (selecting pivots) do */
174*bf2c3715SXin Li {
175*bf2c3715SXin Li /* --- Select node of minimum approximate degree -------------------- */
176*bf2c3715SXin Li for(k = -1; mindeg < n && (k = head[mindeg]) == -1; mindeg++) {}
177*bf2c3715SXin Li if(next[k] != -1) last[next[k]] = -1;
178*bf2c3715SXin Li head[mindeg] = next[k]; /* remove k from degree list */
179*bf2c3715SXin Li elenk = elen[k]; /* elenk = |Ek| */
180*bf2c3715SXin Li nvk = nv[k]; /* # of nodes k represents */
181*bf2c3715SXin Li nel += nvk; /* nv[k] nodes of A eliminated */
182*bf2c3715SXin Li
183*bf2c3715SXin Li /* --- Garbage collection ------------------------------------------- */
184*bf2c3715SXin Li if(elenk > 0 && cnz + mindeg >= nzmax)
185*bf2c3715SXin Li {
186*bf2c3715SXin Li for(j = 0; j < n; j++)
187*bf2c3715SXin Li {
188*bf2c3715SXin Li if((p = Cp[j]) >= 0) /* j is a live node or element */
189*bf2c3715SXin Li {
190*bf2c3715SXin Li Cp[j] = Ci[p]; /* save first entry of object */
191*bf2c3715SXin Li Ci[p] = amd_flip (j); /* first entry is now amd_flip(j) */
192*bf2c3715SXin Li }
193*bf2c3715SXin Li }
194*bf2c3715SXin Li for(q = 0, p = 0; p < cnz; ) /* scan all of memory */
195*bf2c3715SXin Li {
196*bf2c3715SXin Li if((j = amd_flip (Ci[p++])) >= 0) /* found object j */
197*bf2c3715SXin Li {
198*bf2c3715SXin Li Ci[q] = Cp[j]; /* restore first entry of object */
199*bf2c3715SXin Li Cp[j] = q++; /* new pointer to object j */
200*bf2c3715SXin Li for(k3 = 0; k3 < len[j]-1; k3++) Ci[q++] = Ci[p++];
201*bf2c3715SXin Li }
202*bf2c3715SXin Li }
203*bf2c3715SXin Li cnz = q; /* Ci[cnz...nzmax-1] now free */
204*bf2c3715SXin Li }
205*bf2c3715SXin Li
206*bf2c3715SXin Li /* --- Construct new element ---------------------------------------- */
207*bf2c3715SXin Li dk = 0;
208*bf2c3715SXin Li nv[k] = -nvk; /* flag k as in Lk */
209*bf2c3715SXin Li p = Cp[k];
210*bf2c3715SXin Li pk1 = (elenk == 0) ? p : cnz; /* do in place if elen[k] == 0 */
211*bf2c3715SXin Li pk2 = pk1;
212*bf2c3715SXin Li for(k1 = 1; k1 <= elenk + 1; k1++)
213*bf2c3715SXin Li {
214*bf2c3715SXin Li if(k1 > elenk)
215*bf2c3715SXin Li {
216*bf2c3715SXin Li e = k; /* search the nodes in k */
217*bf2c3715SXin Li pj = p; /* list of nodes starts at Ci[pj]*/
218*bf2c3715SXin Li ln = len[k] - elenk; /* length of list of nodes in k */
219*bf2c3715SXin Li }
220*bf2c3715SXin Li else
221*bf2c3715SXin Li {
222*bf2c3715SXin Li e = Ci[p++]; /* search the nodes in e */
223*bf2c3715SXin Li pj = Cp[e];
224*bf2c3715SXin Li ln = len[e]; /* length of list of nodes in e */
225*bf2c3715SXin Li }
226*bf2c3715SXin Li for(k2 = 1; k2 <= ln; k2++)
227*bf2c3715SXin Li {
228*bf2c3715SXin Li i = Ci[pj++];
229*bf2c3715SXin Li if((nvi = nv[i]) <= 0) continue; /* node i dead, or seen */
230*bf2c3715SXin Li dk += nvi; /* degree[Lk] += size of node i */
231*bf2c3715SXin Li nv[i] = -nvi; /* negate nv[i] to denote i in Lk*/
232*bf2c3715SXin Li Ci[pk2++] = i; /* place i in Lk */
233*bf2c3715SXin Li if(next[i] != -1) last[next[i]] = last[i];
234*bf2c3715SXin Li if(last[i] != -1) /* remove i from degree list */
235*bf2c3715SXin Li {
236*bf2c3715SXin Li next[last[i]] = next[i];
237*bf2c3715SXin Li }
238*bf2c3715SXin Li else
239*bf2c3715SXin Li {
240*bf2c3715SXin Li head[degree[i]] = next[i];
241*bf2c3715SXin Li }
242*bf2c3715SXin Li }
243*bf2c3715SXin Li if(e != k)
244*bf2c3715SXin Li {
245*bf2c3715SXin Li Cp[e] = amd_flip (k); /* absorb e into k */
246*bf2c3715SXin Li w[e] = 0; /* e is now a dead element */
247*bf2c3715SXin Li }
248*bf2c3715SXin Li }
249*bf2c3715SXin Li if(elenk != 0) cnz = pk2; /* Ci[cnz...nzmax] is free */
250*bf2c3715SXin Li degree[k] = dk; /* external degree of k - |Lk\i| */
251*bf2c3715SXin Li Cp[k] = pk1; /* element k is in Ci[pk1..pk2-1] */
252*bf2c3715SXin Li len[k] = pk2 - pk1;
253*bf2c3715SXin Li elen[k] = -2; /* k is now an element */
254*bf2c3715SXin Li
255*bf2c3715SXin Li /* --- Find set differences ----------------------------------------- */
256*bf2c3715SXin Li mark = internal::cs_wclear<StorageIndex>(mark, lemax, w, n); /* clear w if necessary */
257*bf2c3715SXin Li for(pk = pk1; pk < pk2; pk++) /* scan 1: find |Le\Lk| */
258*bf2c3715SXin Li {
259*bf2c3715SXin Li i = Ci[pk];
260*bf2c3715SXin Li if((eln = elen[i]) <= 0) continue;/* skip if elen[i] empty */
261*bf2c3715SXin Li nvi = -nv[i]; /* nv[i] was negated */
262*bf2c3715SXin Li wnvi = mark - nvi;
263*bf2c3715SXin Li for(p = Cp[i]; p <= Cp[i] + eln - 1; p++) /* scan Ei */
264*bf2c3715SXin Li {
265*bf2c3715SXin Li e = Ci[p];
266*bf2c3715SXin Li if(w[e] >= mark)
267*bf2c3715SXin Li {
268*bf2c3715SXin Li w[e] -= nvi; /* decrement |Le\Lk| */
269*bf2c3715SXin Li }
270*bf2c3715SXin Li else if(w[e] != 0) /* ensure e is a live element */
271*bf2c3715SXin Li {
272*bf2c3715SXin Li w[e] = degree[e] + wnvi; /* 1st time e seen in scan 1 */
273*bf2c3715SXin Li }
274*bf2c3715SXin Li }
275*bf2c3715SXin Li }
276*bf2c3715SXin Li
277*bf2c3715SXin Li /* --- Degree update ------------------------------------------------ */
278*bf2c3715SXin Li for(pk = pk1; pk < pk2; pk++) /* scan2: degree update */
279*bf2c3715SXin Li {
280*bf2c3715SXin Li i = Ci[pk]; /* consider node i in Lk */
281*bf2c3715SXin Li p1 = Cp[i];
282*bf2c3715SXin Li p2 = p1 + elen[i] - 1;
283*bf2c3715SXin Li pn = p1;
284*bf2c3715SXin Li for(h = 0, d = 0, p = p1; p <= p2; p++) /* scan Ei */
285*bf2c3715SXin Li {
286*bf2c3715SXin Li e = Ci[p];
287*bf2c3715SXin Li if(w[e] != 0) /* e is an unabsorbed element */
288*bf2c3715SXin Li {
289*bf2c3715SXin Li dext = w[e] - mark; /* dext = |Le\Lk| */
290*bf2c3715SXin Li if(dext > 0)
291*bf2c3715SXin Li {
292*bf2c3715SXin Li d += dext; /* sum up the set differences */
293*bf2c3715SXin Li Ci[pn++] = e; /* keep e in Ei */
294*bf2c3715SXin Li h += e; /* compute the hash of node i */
295*bf2c3715SXin Li }
296*bf2c3715SXin Li else
297*bf2c3715SXin Li {
298*bf2c3715SXin Li Cp[e] = amd_flip (k); /* aggressive absorb. e->k */
299*bf2c3715SXin Li w[e] = 0; /* e is a dead element */
300*bf2c3715SXin Li }
301*bf2c3715SXin Li }
302*bf2c3715SXin Li }
303*bf2c3715SXin Li elen[i] = pn - p1 + 1; /* elen[i] = |Ei| */
304*bf2c3715SXin Li p3 = pn;
305*bf2c3715SXin Li p4 = p1 + len[i];
306*bf2c3715SXin Li for(p = p2 + 1; p < p4; p++) /* prune edges in Ai */
307*bf2c3715SXin Li {
308*bf2c3715SXin Li j = Ci[p];
309*bf2c3715SXin Li if((nvj = nv[j]) <= 0) continue; /* node j dead or in Lk */
310*bf2c3715SXin Li d += nvj; /* degree(i) += |j| */
311*bf2c3715SXin Li Ci[pn++] = j; /* place j in node list of i */
312*bf2c3715SXin Li h += j; /* compute hash for node i */
313*bf2c3715SXin Li }
314*bf2c3715SXin Li if(d == 0) /* check for mass elimination */
315*bf2c3715SXin Li {
316*bf2c3715SXin Li Cp[i] = amd_flip (k); /* absorb i into k */
317*bf2c3715SXin Li nvi = -nv[i];
318*bf2c3715SXin Li dk -= nvi; /* |Lk| -= |i| */
319*bf2c3715SXin Li nvk += nvi; /* |k| += nv[i] */
320*bf2c3715SXin Li nel += nvi;
321*bf2c3715SXin Li nv[i] = 0;
322*bf2c3715SXin Li elen[i] = -1; /* node i is dead */
323*bf2c3715SXin Li }
324*bf2c3715SXin Li else
325*bf2c3715SXin Li {
326*bf2c3715SXin Li degree[i] = std::min<StorageIndex> (degree[i], d); /* update degree(i) */
327*bf2c3715SXin Li Ci[pn] = Ci[p3]; /* move first node to end */
328*bf2c3715SXin Li Ci[p3] = Ci[p1]; /* move 1st el. to end of Ei */
329*bf2c3715SXin Li Ci[p1] = k; /* add k as 1st element in of Ei */
330*bf2c3715SXin Li len[i] = pn - p1 + 1; /* new len of adj. list of node i */
331*bf2c3715SXin Li h %= n; /* finalize hash of i */
332*bf2c3715SXin Li next[i] = hhead[h]; /* place i in hash bucket */
333*bf2c3715SXin Li hhead[h] = i;
334*bf2c3715SXin Li last[i] = h; /* save hash of i in last[i] */
335*bf2c3715SXin Li }
336*bf2c3715SXin Li } /* scan2 is done */
337*bf2c3715SXin Li degree[k] = dk; /* finalize |Lk| */
338*bf2c3715SXin Li lemax = std::max<StorageIndex>(lemax, dk);
339*bf2c3715SXin Li mark = internal::cs_wclear<StorageIndex>(mark+lemax, lemax, w, n); /* clear w */
340*bf2c3715SXin Li
341*bf2c3715SXin Li /* --- Supernode detection ------------------------------------------ */
342*bf2c3715SXin Li for(pk = pk1; pk < pk2; pk++)
343*bf2c3715SXin Li {
344*bf2c3715SXin Li i = Ci[pk];
345*bf2c3715SXin Li if(nv[i] >= 0) continue; /* skip if i is dead */
346*bf2c3715SXin Li h = last[i]; /* scan hash bucket of node i */
347*bf2c3715SXin Li i = hhead[h];
348*bf2c3715SXin Li hhead[h] = -1; /* hash bucket will be empty */
349*bf2c3715SXin Li for(; i != -1 && next[i] != -1; i = next[i], mark++)
350*bf2c3715SXin Li {
351*bf2c3715SXin Li ln = len[i];
352*bf2c3715SXin Li eln = elen[i];
353*bf2c3715SXin Li for(p = Cp[i]+1; p <= Cp[i] + ln-1; p++) w[Ci[p]] = mark;
354*bf2c3715SXin Li jlast = i;
355*bf2c3715SXin Li for(j = next[i]; j != -1; ) /* compare i with all j */
356*bf2c3715SXin Li {
357*bf2c3715SXin Li ok = (len[j] == ln) && (elen[j] == eln);
358*bf2c3715SXin Li for(p = Cp[j] + 1; ok && p <= Cp[j] + ln - 1; p++)
359*bf2c3715SXin Li {
360*bf2c3715SXin Li if(w[Ci[p]] != mark) ok = 0; /* compare i and j*/
361*bf2c3715SXin Li }
362*bf2c3715SXin Li if(ok) /* i and j are identical */
363*bf2c3715SXin Li {
364*bf2c3715SXin Li Cp[j] = amd_flip (i); /* absorb j into i */
365*bf2c3715SXin Li nv[i] += nv[j];
366*bf2c3715SXin Li nv[j] = 0;
367*bf2c3715SXin Li elen[j] = -1; /* node j is dead */
368*bf2c3715SXin Li j = next[j]; /* delete j from hash bucket */
369*bf2c3715SXin Li next[jlast] = j;
370*bf2c3715SXin Li }
371*bf2c3715SXin Li else
372*bf2c3715SXin Li {
373*bf2c3715SXin Li jlast = j; /* j and i are different */
374*bf2c3715SXin Li j = next[j];
375*bf2c3715SXin Li }
376*bf2c3715SXin Li }
377*bf2c3715SXin Li }
378*bf2c3715SXin Li }
379*bf2c3715SXin Li
380*bf2c3715SXin Li /* --- Finalize new element------------------------------------------ */
381*bf2c3715SXin Li for(p = pk1, pk = pk1; pk < pk2; pk++) /* finalize Lk */
382*bf2c3715SXin Li {
383*bf2c3715SXin Li i = Ci[pk];
384*bf2c3715SXin Li if((nvi = -nv[i]) <= 0) continue;/* skip if i is dead */
385*bf2c3715SXin Li nv[i] = nvi; /* restore nv[i] */
386*bf2c3715SXin Li d = degree[i] + dk - nvi; /* compute external degree(i) */
387*bf2c3715SXin Li d = std::min<StorageIndex> (d, n - nel - nvi);
388*bf2c3715SXin Li if(head[d] != -1) last[head[d]] = i;
389*bf2c3715SXin Li next[i] = head[d]; /* put i back in degree list */
390*bf2c3715SXin Li last[i] = -1;
391*bf2c3715SXin Li head[d] = i;
392*bf2c3715SXin Li mindeg = std::min<StorageIndex> (mindeg, d); /* find new minimum degree */
393*bf2c3715SXin Li degree[i] = d;
394*bf2c3715SXin Li Ci[p++] = i; /* place i in Lk */
395*bf2c3715SXin Li }
396*bf2c3715SXin Li nv[k] = nvk; /* # nodes absorbed into k */
397*bf2c3715SXin Li if((len[k] = p-pk1) == 0) /* length of adj list of element k*/
398*bf2c3715SXin Li {
399*bf2c3715SXin Li Cp[k] = -1; /* k is a root of the tree */
400*bf2c3715SXin Li w[k] = 0; /* k is now a dead element */
401*bf2c3715SXin Li }
402*bf2c3715SXin Li if(elenk != 0) cnz = p; /* free unused space in Lk */
403*bf2c3715SXin Li }
404*bf2c3715SXin Li
405*bf2c3715SXin Li /* --- Postordering ----------------------------------------------------- */
406*bf2c3715SXin Li for(i = 0; i < n; i++) Cp[i] = amd_flip (Cp[i]);/* fix assembly tree */
407*bf2c3715SXin Li for(j = 0; j <= n; j++) head[j] = -1;
408*bf2c3715SXin Li for(j = n; j >= 0; j--) /* place unordered nodes in lists */
409*bf2c3715SXin Li {
410*bf2c3715SXin Li if(nv[j] > 0) continue; /* skip if j is an element */
411*bf2c3715SXin Li next[j] = head[Cp[j]]; /* place j in list of its parent */
412*bf2c3715SXin Li head[Cp[j]] = j;
413*bf2c3715SXin Li }
414*bf2c3715SXin Li for(e = n; e >= 0; e--) /* place elements in lists */
415*bf2c3715SXin Li {
416*bf2c3715SXin Li if(nv[e] <= 0) continue; /* skip unless e is an element */
417*bf2c3715SXin Li if(Cp[e] != -1)
418*bf2c3715SXin Li {
419*bf2c3715SXin Li next[e] = head[Cp[e]]; /* place e in list of its parent */
420*bf2c3715SXin Li head[Cp[e]] = e;
421*bf2c3715SXin Li }
422*bf2c3715SXin Li }
423*bf2c3715SXin Li for(k = 0, i = 0; i <= n; i++) /* postorder the assembly tree */
424*bf2c3715SXin Li {
425*bf2c3715SXin Li if(Cp[i] == -1) k = internal::cs_tdfs<StorageIndex>(i, k, head, next, perm.indices().data(), w);
426*bf2c3715SXin Li }
427*bf2c3715SXin Li
428*bf2c3715SXin Li perm.indices().conservativeResize(n);
429*bf2c3715SXin Li }
430*bf2c3715SXin Li
431*bf2c3715SXin Li } // namespace internal
432*bf2c3715SXin Li
433*bf2c3715SXin Li } // end namespace Eigen
434*bf2c3715SXin Li
435*bf2c3715SXin Li #endif // EIGEN_SPARSE_AMD_H
436