1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library 2*bf2c3715SXin Li // for linear algebra. 3*bf2c3715SXin Li // 4*bf2c3715SXin Li // Copyright (C) 2008-2010 Benoit Jacob <[email protected]> 5*bf2c3715SXin Li // Copyright (C) 2014 Gael Guennebaud <[email protected]> 6*bf2c3715SXin Li // 7*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla 8*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed 9*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10*bf2c3715SXin Li 11*bf2c3715SXin Li #ifndef EIGEN_INVERSE_IMPL_H 12*bf2c3715SXin Li #define EIGEN_INVERSE_IMPL_H 13*bf2c3715SXin Li 14*bf2c3715SXin Li namespace Eigen { 15*bf2c3715SXin Li 16*bf2c3715SXin Li namespace internal { 17*bf2c3715SXin Li 18*bf2c3715SXin Li /********************************** 19*bf2c3715SXin Li *** General case implementation *** 20*bf2c3715SXin Li **********************************/ 21*bf2c3715SXin Li 22*bf2c3715SXin Li template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> 23*bf2c3715SXin Li struct compute_inverse 24*bf2c3715SXin Li { 25*bf2c3715SXin Li EIGEN_DEVICE_FUNC runcompute_inverse26*bf2c3715SXin Li static inline void run(const MatrixType& matrix, ResultType& result) 27*bf2c3715SXin Li { 28*bf2c3715SXin Li result = matrix.partialPivLu().inverse(); 29*bf2c3715SXin Li } 30*bf2c3715SXin Li }; 31*bf2c3715SXin Li 32*bf2c3715SXin Li template<typename MatrixType, typename ResultType, int Size = MatrixType::RowsAtCompileTime> 33*bf2c3715SXin Li struct compute_inverse_and_det_with_check { /* nothing! general case not supported. */ }; 34*bf2c3715SXin Li 35*bf2c3715SXin Li /**************************** 36*bf2c3715SXin Li *** Size 1 implementation *** 37*bf2c3715SXin Li ****************************/ 38*bf2c3715SXin Li 39*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 40*bf2c3715SXin Li struct compute_inverse<MatrixType, ResultType, 1> 41*bf2c3715SXin Li { 42*bf2c3715SXin Li EIGEN_DEVICE_FUNC 43*bf2c3715SXin Li static inline void run(const MatrixType& matrix, ResultType& result) 44*bf2c3715SXin Li { 45*bf2c3715SXin Li typedef typename MatrixType::Scalar Scalar; 46*bf2c3715SXin Li internal::evaluator<MatrixType> matrixEval(matrix); 47*bf2c3715SXin Li result.coeffRef(0,0) = Scalar(1) / matrixEval.coeff(0,0); 48*bf2c3715SXin Li } 49*bf2c3715SXin Li }; 50*bf2c3715SXin Li 51*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 52*bf2c3715SXin Li struct compute_inverse_and_det_with_check<MatrixType, ResultType, 1> 53*bf2c3715SXin Li { 54*bf2c3715SXin Li EIGEN_DEVICE_FUNC 55*bf2c3715SXin Li static inline void run( 56*bf2c3715SXin Li const MatrixType& matrix, 57*bf2c3715SXin Li const typename MatrixType::RealScalar& absDeterminantThreshold, 58*bf2c3715SXin Li ResultType& result, 59*bf2c3715SXin Li typename ResultType::Scalar& determinant, 60*bf2c3715SXin Li bool& invertible 61*bf2c3715SXin Li ) 62*bf2c3715SXin Li { 63*bf2c3715SXin Li using std::abs; 64*bf2c3715SXin Li determinant = matrix.coeff(0,0); 65*bf2c3715SXin Li invertible = abs(determinant) > absDeterminantThreshold; 66*bf2c3715SXin Li if(invertible) result.coeffRef(0,0) = typename ResultType::Scalar(1) / determinant; 67*bf2c3715SXin Li } 68*bf2c3715SXin Li }; 69*bf2c3715SXin Li 70*bf2c3715SXin Li /**************************** 71*bf2c3715SXin Li *** Size 2 implementation *** 72*bf2c3715SXin Li ****************************/ 73*bf2c3715SXin Li 74*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 75*bf2c3715SXin Li EIGEN_DEVICE_FUNC 76*bf2c3715SXin Li inline void compute_inverse_size2_helper( 77*bf2c3715SXin Li const MatrixType& matrix, const typename ResultType::Scalar& invdet, 78*bf2c3715SXin Li ResultType& result) 79*bf2c3715SXin Li { 80*bf2c3715SXin Li typename ResultType::Scalar temp = matrix.coeff(0,0); 81*bf2c3715SXin Li result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; 82*bf2c3715SXin Li result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; 83*bf2c3715SXin Li result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; 84*bf2c3715SXin Li result.coeffRef(1,1) = temp * invdet; 85*bf2c3715SXin Li } 86*bf2c3715SXin Li 87*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 88*bf2c3715SXin Li struct compute_inverse<MatrixType, ResultType, 2> 89*bf2c3715SXin Li { 90*bf2c3715SXin Li EIGEN_DEVICE_FUNC 91*bf2c3715SXin Li static inline void run(const MatrixType& matrix, ResultType& result) 92*bf2c3715SXin Li { 93*bf2c3715SXin Li typedef typename ResultType::Scalar Scalar; 94*bf2c3715SXin Li const Scalar invdet = typename MatrixType::Scalar(1) / matrix.determinant(); 95*bf2c3715SXin Li compute_inverse_size2_helper(matrix, invdet, result); 96*bf2c3715SXin Li } 97*bf2c3715SXin Li }; 98*bf2c3715SXin Li 99*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 100*bf2c3715SXin Li struct compute_inverse_and_det_with_check<MatrixType, ResultType, 2> 101*bf2c3715SXin Li { 102*bf2c3715SXin Li EIGEN_DEVICE_FUNC 103*bf2c3715SXin Li static inline void run( 104*bf2c3715SXin Li const MatrixType& matrix, 105*bf2c3715SXin Li const typename MatrixType::RealScalar& absDeterminantThreshold, 106*bf2c3715SXin Li ResultType& inverse, 107*bf2c3715SXin Li typename ResultType::Scalar& determinant, 108*bf2c3715SXin Li bool& invertible 109*bf2c3715SXin Li ) 110*bf2c3715SXin Li { 111*bf2c3715SXin Li using std::abs; 112*bf2c3715SXin Li typedef typename ResultType::Scalar Scalar; 113*bf2c3715SXin Li determinant = matrix.determinant(); 114*bf2c3715SXin Li invertible = abs(determinant) > absDeterminantThreshold; 115*bf2c3715SXin Li if(!invertible) return; 116*bf2c3715SXin Li const Scalar invdet = Scalar(1) / determinant; 117*bf2c3715SXin Li compute_inverse_size2_helper(matrix, invdet, inverse); 118*bf2c3715SXin Li } 119*bf2c3715SXin Li }; 120*bf2c3715SXin Li 121*bf2c3715SXin Li /**************************** 122*bf2c3715SXin Li *** Size 3 implementation *** 123*bf2c3715SXin Li ****************************/ 124*bf2c3715SXin Li 125*bf2c3715SXin Li template<typename MatrixType, int i, int j> 126*bf2c3715SXin Li EIGEN_DEVICE_FUNC 127*bf2c3715SXin Li inline typename MatrixType::Scalar cofactor_3x3(const MatrixType& m) 128*bf2c3715SXin Li { 129*bf2c3715SXin Li enum { 130*bf2c3715SXin Li i1 = (i+1) % 3, 131*bf2c3715SXin Li i2 = (i+2) % 3, 132*bf2c3715SXin Li j1 = (j+1) % 3, 133*bf2c3715SXin Li j2 = (j+2) % 3 134*bf2c3715SXin Li }; 135*bf2c3715SXin Li return m.coeff(i1, j1) * m.coeff(i2, j2) 136*bf2c3715SXin Li - m.coeff(i1, j2) * m.coeff(i2, j1); 137*bf2c3715SXin Li } 138*bf2c3715SXin Li 139*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 140*bf2c3715SXin Li EIGEN_DEVICE_FUNC 141*bf2c3715SXin Li inline void compute_inverse_size3_helper( 142*bf2c3715SXin Li const MatrixType& matrix, 143*bf2c3715SXin Li const typename ResultType::Scalar& invdet, 144*bf2c3715SXin Li const Matrix<typename ResultType::Scalar,3,1>& cofactors_col0, 145*bf2c3715SXin Li ResultType& result) 146*bf2c3715SXin Li { 147*bf2c3715SXin Li // Compute cofactors in a way that avoids aliasing issues. 148*bf2c3715SXin Li typedef typename ResultType::Scalar Scalar; 149*bf2c3715SXin Li const Scalar c01 = cofactor_3x3<MatrixType,0,1>(matrix) * invdet; 150*bf2c3715SXin Li const Scalar c11 = cofactor_3x3<MatrixType,1,1>(matrix) * invdet; 151*bf2c3715SXin Li const Scalar c02 = cofactor_3x3<MatrixType,0,2>(matrix) * invdet; 152*bf2c3715SXin Li result.coeffRef(1,2) = cofactor_3x3<MatrixType,2,1>(matrix) * invdet; 153*bf2c3715SXin Li result.coeffRef(2,1) = cofactor_3x3<MatrixType,1,2>(matrix) * invdet; 154*bf2c3715SXin Li result.coeffRef(2,2) = cofactor_3x3<MatrixType,2,2>(matrix) * invdet; 155*bf2c3715SXin Li result.coeffRef(1,0) = c01; 156*bf2c3715SXin Li result.coeffRef(1,1) = c11; 157*bf2c3715SXin Li result.coeffRef(2,0) = c02; 158*bf2c3715SXin Li result.row(0) = cofactors_col0 * invdet; 159*bf2c3715SXin Li } 160*bf2c3715SXin Li 161*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 162*bf2c3715SXin Li struct compute_inverse<MatrixType, ResultType, 3> 163*bf2c3715SXin Li { 164*bf2c3715SXin Li EIGEN_DEVICE_FUNC 165*bf2c3715SXin Li static inline void run(const MatrixType& matrix, ResultType& result) 166*bf2c3715SXin Li { 167*bf2c3715SXin Li typedef typename ResultType::Scalar Scalar; 168*bf2c3715SXin Li Matrix<typename MatrixType::Scalar,3,1> cofactors_col0; 169*bf2c3715SXin Li cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); 170*bf2c3715SXin Li cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); 171*bf2c3715SXin Li cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); 172*bf2c3715SXin Li const Scalar det = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); 173*bf2c3715SXin Li const Scalar invdet = Scalar(1) / det; 174*bf2c3715SXin Li compute_inverse_size3_helper(matrix, invdet, cofactors_col0, result); 175*bf2c3715SXin Li } 176*bf2c3715SXin Li }; 177*bf2c3715SXin Li 178*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 179*bf2c3715SXin Li struct compute_inverse_and_det_with_check<MatrixType, ResultType, 3> 180*bf2c3715SXin Li { 181*bf2c3715SXin Li EIGEN_DEVICE_FUNC 182*bf2c3715SXin Li static inline void run( 183*bf2c3715SXin Li const MatrixType& matrix, 184*bf2c3715SXin Li const typename MatrixType::RealScalar& absDeterminantThreshold, 185*bf2c3715SXin Li ResultType& inverse, 186*bf2c3715SXin Li typename ResultType::Scalar& determinant, 187*bf2c3715SXin Li bool& invertible 188*bf2c3715SXin Li ) 189*bf2c3715SXin Li { 190*bf2c3715SXin Li typedef typename ResultType::Scalar Scalar; 191*bf2c3715SXin Li Matrix<Scalar,3,1> cofactors_col0; 192*bf2c3715SXin Li cofactors_col0.coeffRef(0) = cofactor_3x3<MatrixType,0,0>(matrix); 193*bf2c3715SXin Li cofactors_col0.coeffRef(1) = cofactor_3x3<MatrixType,1,0>(matrix); 194*bf2c3715SXin Li cofactors_col0.coeffRef(2) = cofactor_3x3<MatrixType,2,0>(matrix); 195*bf2c3715SXin Li determinant = (cofactors_col0.cwiseProduct(matrix.col(0))).sum(); 196*bf2c3715SXin Li invertible = Eigen::numext::abs(determinant) > absDeterminantThreshold; 197*bf2c3715SXin Li if(!invertible) return; 198*bf2c3715SXin Li const Scalar invdet = Scalar(1) / determinant; 199*bf2c3715SXin Li compute_inverse_size3_helper(matrix, invdet, cofactors_col0, inverse); 200*bf2c3715SXin Li } 201*bf2c3715SXin Li }; 202*bf2c3715SXin Li 203*bf2c3715SXin Li /**************************** 204*bf2c3715SXin Li *** Size 4 implementation *** 205*bf2c3715SXin Li ****************************/ 206*bf2c3715SXin Li 207*bf2c3715SXin Li template<typename Derived> 208*bf2c3715SXin Li EIGEN_DEVICE_FUNC 209*bf2c3715SXin Li inline const typename Derived::Scalar general_det3_helper 210*bf2c3715SXin Li (const MatrixBase<Derived>& matrix, int i1, int i2, int i3, int j1, int j2, int j3) 211*bf2c3715SXin Li { 212*bf2c3715SXin Li return matrix.coeff(i1,j1) 213*bf2c3715SXin Li * (matrix.coeff(i2,j2) * matrix.coeff(i3,j3) - matrix.coeff(i2,j3) * matrix.coeff(i3,j2)); 214*bf2c3715SXin Li } 215*bf2c3715SXin Li 216*bf2c3715SXin Li template<typename MatrixType, int i, int j> 217*bf2c3715SXin Li EIGEN_DEVICE_FUNC 218*bf2c3715SXin Li inline typename MatrixType::Scalar cofactor_4x4(const MatrixType& matrix) 219*bf2c3715SXin Li { 220*bf2c3715SXin Li enum { 221*bf2c3715SXin Li i1 = (i+1) % 4, 222*bf2c3715SXin Li i2 = (i+2) % 4, 223*bf2c3715SXin Li i3 = (i+3) % 4, 224*bf2c3715SXin Li j1 = (j+1) % 4, 225*bf2c3715SXin Li j2 = (j+2) % 4, 226*bf2c3715SXin Li j3 = (j+3) % 4 227*bf2c3715SXin Li }; 228*bf2c3715SXin Li return general_det3_helper(matrix, i1, i2, i3, j1, j2, j3) 229*bf2c3715SXin Li + general_det3_helper(matrix, i2, i3, i1, j1, j2, j3) 230*bf2c3715SXin Li + general_det3_helper(matrix, i3, i1, i2, j1, j2, j3); 231*bf2c3715SXin Li } 232*bf2c3715SXin Li 233*bf2c3715SXin Li template<int Arch, typename Scalar, typename MatrixType, typename ResultType> 234*bf2c3715SXin Li struct compute_inverse_size4 235*bf2c3715SXin Li { 236*bf2c3715SXin Li EIGEN_DEVICE_FUNC 237*bf2c3715SXin Li static void run(const MatrixType& matrix, ResultType& result) 238*bf2c3715SXin Li { 239*bf2c3715SXin Li result.coeffRef(0,0) = cofactor_4x4<MatrixType,0,0>(matrix); 240*bf2c3715SXin Li result.coeffRef(1,0) = -cofactor_4x4<MatrixType,0,1>(matrix); 241*bf2c3715SXin Li result.coeffRef(2,0) = cofactor_4x4<MatrixType,0,2>(matrix); 242*bf2c3715SXin Li result.coeffRef(3,0) = -cofactor_4x4<MatrixType,0,3>(matrix); 243*bf2c3715SXin Li result.coeffRef(0,2) = cofactor_4x4<MatrixType,2,0>(matrix); 244*bf2c3715SXin Li result.coeffRef(1,2) = -cofactor_4x4<MatrixType,2,1>(matrix); 245*bf2c3715SXin Li result.coeffRef(2,2) = cofactor_4x4<MatrixType,2,2>(matrix); 246*bf2c3715SXin Li result.coeffRef(3,2) = -cofactor_4x4<MatrixType,2,3>(matrix); 247*bf2c3715SXin Li result.coeffRef(0,1) = -cofactor_4x4<MatrixType,1,0>(matrix); 248*bf2c3715SXin Li result.coeffRef(1,1) = cofactor_4x4<MatrixType,1,1>(matrix); 249*bf2c3715SXin Li result.coeffRef(2,1) = -cofactor_4x4<MatrixType,1,2>(matrix); 250*bf2c3715SXin Li result.coeffRef(3,1) = cofactor_4x4<MatrixType,1,3>(matrix); 251*bf2c3715SXin Li result.coeffRef(0,3) = -cofactor_4x4<MatrixType,3,0>(matrix); 252*bf2c3715SXin Li result.coeffRef(1,3) = cofactor_4x4<MatrixType,3,1>(matrix); 253*bf2c3715SXin Li result.coeffRef(2,3) = -cofactor_4x4<MatrixType,3,2>(matrix); 254*bf2c3715SXin Li result.coeffRef(3,3) = cofactor_4x4<MatrixType,3,3>(matrix); 255*bf2c3715SXin Li result /= (matrix.col(0).cwiseProduct(result.row(0).transpose())).sum(); 256*bf2c3715SXin Li } 257*bf2c3715SXin Li }; 258*bf2c3715SXin Li 259*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 260*bf2c3715SXin Li struct compute_inverse<MatrixType, ResultType, 4> 261*bf2c3715SXin Li : compute_inverse_size4<Architecture::Target, typename MatrixType::Scalar, 262*bf2c3715SXin Li MatrixType, ResultType> 263*bf2c3715SXin Li { 264*bf2c3715SXin Li }; 265*bf2c3715SXin Li 266*bf2c3715SXin Li template<typename MatrixType, typename ResultType> 267*bf2c3715SXin Li struct compute_inverse_and_det_with_check<MatrixType, ResultType, 4> 268*bf2c3715SXin Li { 269*bf2c3715SXin Li EIGEN_DEVICE_FUNC 270*bf2c3715SXin Li static inline void run( 271*bf2c3715SXin Li const MatrixType& matrix, 272*bf2c3715SXin Li const typename MatrixType::RealScalar& absDeterminantThreshold, 273*bf2c3715SXin Li ResultType& inverse, 274*bf2c3715SXin Li typename ResultType::Scalar& determinant, 275*bf2c3715SXin Li bool& invertible 276*bf2c3715SXin Li ) 277*bf2c3715SXin Li { 278*bf2c3715SXin Li using std::abs; 279*bf2c3715SXin Li determinant = matrix.determinant(); 280*bf2c3715SXin Li invertible = abs(determinant) > absDeterminantThreshold; 281*bf2c3715SXin Li if(invertible && extract_data(matrix) != extract_data(inverse)) { 282*bf2c3715SXin Li compute_inverse<MatrixType, ResultType>::run(matrix, inverse); 283*bf2c3715SXin Li } 284*bf2c3715SXin Li else if(invertible) { 285*bf2c3715SXin Li MatrixType matrix_t = matrix; 286*bf2c3715SXin Li compute_inverse<MatrixType, ResultType>::run(matrix_t, inverse); 287*bf2c3715SXin Li } 288*bf2c3715SXin Li } 289*bf2c3715SXin Li }; 290*bf2c3715SXin Li 291*bf2c3715SXin Li /************************* 292*bf2c3715SXin Li *** MatrixBase methods *** 293*bf2c3715SXin Li *************************/ 294*bf2c3715SXin Li 295*bf2c3715SXin Li } // end namespace internal 296*bf2c3715SXin Li 297*bf2c3715SXin Li namespace internal { 298*bf2c3715SXin Li 299*bf2c3715SXin Li // Specialization for "dense = dense_xpr.inverse()" 300*bf2c3715SXin Li template<typename DstXprType, typename XprType> 301*bf2c3715SXin Li struct Assignment<DstXprType, Inverse<XprType>, internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar>, Dense2Dense> 302*bf2c3715SXin Li { 303*bf2c3715SXin Li typedef Inverse<XprType> SrcXprType; 304*bf2c3715SXin Li EIGEN_DEVICE_FUNC 305*bf2c3715SXin Li static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename XprType::Scalar> &) 306*bf2c3715SXin Li { 307*bf2c3715SXin Li Index dstRows = src.rows(); 308*bf2c3715SXin Li Index dstCols = src.cols(); 309*bf2c3715SXin Li if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) 310*bf2c3715SXin Li dst.resize(dstRows, dstCols); 311*bf2c3715SXin Li 312*bf2c3715SXin Li const int Size = EIGEN_PLAIN_ENUM_MIN(XprType::ColsAtCompileTime,DstXprType::ColsAtCompileTime); 313*bf2c3715SXin Li EIGEN_ONLY_USED_FOR_DEBUG(Size); 314*bf2c3715SXin Li eigen_assert(( (Size<=1) || (Size>4) || (extract_data(src.nestedExpression())!=extract_data(dst))) 315*bf2c3715SXin Li && "Aliasing problem detected in inverse(), you need to do inverse().eval() here."); 316*bf2c3715SXin Li 317*bf2c3715SXin Li typedef typename internal::nested_eval<XprType,XprType::ColsAtCompileTime>::type ActualXprType; 318*bf2c3715SXin Li typedef typename internal::remove_all<ActualXprType>::type ActualXprTypeCleanded; 319*bf2c3715SXin Li 320*bf2c3715SXin Li ActualXprType actual_xpr(src.nestedExpression()); 321*bf2c3715SXin Li 322*bf2c3715SXin Li compute_inverse<ActualXprTypeCleanded, DstXprType>::run(actual_xpr, dst); 323*bf2c3715SXin Li } 324*bf2c3715SXin Li }; 325*bf2c3715SXin Li 326*bf2c3715SXin Li 327*bf2c3715SXin Li } // end namespace internal 328*bf2c3715SXin Li 329*bf2c3715SXin Li /** \lu_module 330*bf2c3715SXin Li * 331*bf2c3715SXin Li * \returns the matrix inverse of this matrix. 332*bf2c3715SXin Li * 333*bf2c3715SXin Li * For small fixed sizes up to 4x4, this method uses cofactors. 334*bf2c3715SXin Li * In the general case, this method uses class PartialPivLU. 335*bf2c3715SXin Li * 336*bf2c3715SXin Li * \note This matrix must be invertible, otherwise the result is undefined. If you need an 337*bf2c3715SXin Li * invertibility check, do the following: 338*bf2c3715SXin Li * \li for fixed sizes up to 4x4, use computeInverseAndDetWithCheck(). 339*bf2c3715SXin Li * \li for the general case, use class FullPivLU. 340*bf2c3715SXin Li * 341*bf2c3715SXin Li * Example: \include MatrixBase_inverse.cpp 342*bf2c3715SXin Li * Output: \verbinclude MatrixBase_inverse.out 343*bf2c3715SXin Li * 344*bf2c3715SXin Li * \sa computeInverseAndDetWithCheck() 345*bf2c3715SXin Li */ 346*bf2c3715SXin Li template<typename Derived> 347*bf2c3715SXin Li EIGEN_DEVICE_FUNC 348*bf2c3715SXin Li inline const Inverse<Derived> MatrixBase<Derived>::inverse() const 349*bf2c3715SXin Li { 350*bf2c3715SXin Li EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsInteger,THIS_FUNCTION_IS_NOT_FOR_INTEGER_NUMERIC_TYPES) 351*bf2c3715SXin Li eigen_assert(rows() == cols()); 352*bf2c3715SXin Li return Inverse<Derived>(derived()); 353*bf2c3715SXin Li } 354*bf2c3715SXin Li 355*bf2c3715SXin Li /** \lu_module 356*bf2c3715SXin Li * 357*bf2c3715SXin Li * Computation of matrix inverse and determinant, with invertibility check. 358*bf2c3715SXin Li * 359*bf2c3715SXin Li * This is only for fixed-size square matrices of size up to 4x4. 360*bf2c3715SXin Li * 361*bf2c3715SXin Li * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. 362*bf2c3715SXin Li * 363*bf2c3715SXin Li * \param inverse Reference to the matrix in which to store the inverse. 364*bf2c3715SXin Li * \param determinant Reference to the variable in which to store the determinant. 365*bf2c3715SXin Li * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. 366*bf2c3715SXin Li * \param absDeterminantThreshold Optional parameter controlling the invertibility check. 367*bf2c3715SXin Li * The matrix will be declared invertible if the absolute value of its 368*bf2c3715SXin Li * determinant is greater than this threshold. 369*bf2c3715SXin Li * 370*bf2c3715SXin Li * Example: \include MatrixBase_computeInverseAndDetWithCheck.cpp 371*bf2c3715SXin Li * Output: \verbinclude MatrixBase_computeInverseAndDetWithCheck.out 372*bf2c3715SXin Li * 373*bf2c3715SXin Li * \sa inverse(), computeInverseWithCheck() 374*bf2c3715SXin Li */ 375*bf2c3715SXin Li template<typename Derived> 376*bf2c3715SXin Li template<typename ResultType> 377*bf2c3715SXin Li inline void MatrixBase<Derived>::computeInverseAndDetWithCheck( 378*bf2c3715SXin Li ResultType& inverse, 379*bf2c3715SXin Li typename ResultType::Scalar& determinant, 380*bf2c3715SXin Li bool& invertible, 381*bf2c3715SXin Li const RealScalar& absDeterminantThreshold 382*bf2c3715SXin Li ) const 383*bf2c3715SXin Li { 384*bf2c3715SXin Li // i'd love to put some static assertions there, but SFINAE means that they have no effect... 385*bf2c3715SXin Li eigen_assert(rows() == cols()); 386*bf2c3715SXin Li // for 2x2, it's worth giving a chance to avoid evaluating. 387*bf2c3715SXin Li // for larger sizes, evaluating has negligible cost and limits code size. 388*bf2c3715SXin Li typedef typename internal::conditional< 389*bf2c3715SXin Li RowsAtCompileTime == 2, 390*bf2c3715SXin Li typename internal::remove_all<typename internal::nested_eval<Derived, 2>::type>::type, 391*bf2c3715SXin Li PlainObject 392*bf2c3715SXin Li >::type MatrixType; 393*bf2c3715SXin Li internal::compute_inverse_and_det_with_check<MatrixType, ResultType>::run 394*bf2c3715SXin Li (derived(), absDeterminantThreshold, inverse, determinant, invertible); 395*bf2c3715SXin Li } 396*bf2c3715SXin Li 397*bf2c3715SXin Li /** \lu_module 398*bf2c3715SXin Li * 399*bf2c3715SXin Li * Computation of matrix inverse, with invertibility check. 400*bf2c3715SXin Li * 401*bf2c3715SXin Li * This is only for fixed-size square matrices of size up to 4x4. 402*bf2c3715SXin Li * 403*bf2c3715SXin Li * Notice that it will trigger a copy of input matrix when trying to do the inverse in place. 404*bf2c3715SXin Li * 405*bf2c3715SXin Li * \param inverse Reference to the matrix in which to store the inverse. 406*bf2c3715SXin Li * \param invertible Reference to the bool variable in which to store whether the matrix is invertible. 407*bf2c3715SXin Li * \param absDeterminantThreshold Optional parameter controlling the invertibility check. 408*bf2c3715SXin Li * The matrix will be declared invertible if the absolute value of its 409*bf2c3715SXin Li * determinant is greater than this threshold. 410*bf2c3715SXin Li * 411*bf2c3715SXin Li * Example: \include MatrixBase_computeInverseWithCheck.cpp 412*bf2c3715SXin Li * Output: \verbinclude MatrixBase_computeInverseWithCheck.out 413*bf2c3715SXin Li * 414*bf2c3715SXin Li * \sa inverse(), computeInverseAndDetWithCheck() 415*bf2c3715SXin Li */ 416*bf2c3715SXin Li template<typename Derived> 417*bf2c3715SXin Li template<typename ResultType> 418*bf2c3715SXin Li inline void MatrixBase<Derived>::computeInverseWithCheck( 419*bf2c3715SXin Li ResultType& inverse, 420*bf2c3715SXin Li bool& invertible, 421*bf2c3715SXin Li const RealScalar& absDeterminantThreshold 422*bf2c3715SXin Li ) const 423*bf2c3715SXin Li { 424*bf2c3715SXin Li Scalar determinant; 425*bf2c3715SXin Li // i'd love to put some static assertions there, but SFINAE means that they have no effect... 426*bf2c3715SXin Li eigen_assert(rows() == cols()); 427*bf2c3715SXin Li computeInverseAndDetWithCheck(inverse,determinant,invertible,absDeterminantThreshold); 428*bf2c3715SXin Li } 429*bf2c3715SXin Li 430*bf2c3715SXin Li } // end namespace Eigen 431*bf2c3715SXin Li 432*bf2c3715SXin Li #endif // EIGEN_INVERSE_IMPL_H 433