xref: /aosp_15_r20/external/eigen/Eigen/src/Geometry/Umeyama.h (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1*bf2c3715SXin Li // This file is part of Eigen, a lightweight C++ template library
2*bf2c3715SXin Li // for linear algebra.
3*bf2c3715SXin Li //
4*bf2c3715SXin Li // Copyright (C) 2009 Hauke Heibel <[email protected]>
5*bf2c3715SXin Li //
6*bf2c3715SXin Li // This Source Code Form is subject to the terms of the Mozilla
7*bf2c3715SXin Li // Public License v. 2.0. If a copy of the MPL was not distributed
8*bf2c3715SXin Li // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9*bf2c3715SXin Li 
10*bf2c3715SXin Li #ifndef EIGEN_UMEYAMA_H
11*bf2c3715SXin Li #define EIGEN_UMEYAMA_H
12*bf2c3715SXin Li 
13*bf2c3715SXin Li // This file requires the user to include
14*bf2c3715SXin Li // * Eigen/Core
15*bf2c3715SXin Li // * Eigen/LU
16*bf2c3715SXin Li // * Eigen/SVD
17*bf2c3715SXin Li // * Eigen/Array
18*bf2c3715SXin Li 
19*bf2c3715SXin Li namespace Eigen {
20*bf2c3715SXin Li 
21*bf2c3715SXin Li #ifndef EIGEN_PARSED_BY_DOXYGEN
22*bf2c3715SXin Li 
23*bf2c3715SXin Li // These helpers are required since it allows to use mixed types as parameters
24*bf2c3715SXin Li // for the Umeyama. The problem with mixed parameters is that the return type
25*bf2c3715SXin Li // cannot trivially be deduced when float and double types are mixed.
26*bf2c3715SXin Li namespace internal {
27*bf2c3715SXin Li 
28*bf2c3715SXin Li // Compile time return type deduction for different MatrixBase types.
29*bf2c3715SXin Li // Different means here different alignment and parameters but the same underlying
30*bf2c3715SXin Li // real scalar type.
31*bf2c3715SXin Li template<typename MatrixType, typename OtherMatrixType>
32*bf2c3715SXin Li struct umeyama_transform_matrix_type
33*bf2c3715SXin Li {
34*bf2c3715SXin Li   enum {
35*bf2c3715SXin Li     MinRowsAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
36*bf2c3715SXin Li 
37*bf2c3715SXin Li     // When possible we want to choose some small fixed size value since the result
38*bf2c3715SXin Li     // is likely to fit on the stack. So here, EIGEN_SIZE_MIN_PREFER_DYNAMIC is not what we want.
39*bf2c3715SXin Li     HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime)+1
40*bf2c3715SXin Li   };
41*bf2c3715SXin Li 
42*bf2c3715SXin Li   typedef Matrix<typename traits<MatrixType>::Scalar,
43*bf2c3715SXin Li     HomogeneousDimension,
44*bf2c3715SXin Li     HomogeneousDimension,
45*bf2c3715SXin Li     AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor),
46*bf2c3715SXin Li     HomogeneousDimension,
47*bf2c3715SXin Li     HomogeneousDimension
48*bf2c3715SXin Li   > type;
49*bf2c3715SXin Li };
50*bf2c3715SXin Li 
51*bf2c3715SXin Li }
52*bf2c3715SXin Li 
53*bf2c3715SXin Li #endif
54*bf2c3715SXin Li 
55*bf2c3715SXin Li /**
56*bf2c3715SXin Li * \geometry_module \ingroup Geometry_Module
57*bf2c3715SXin Li *
58*bf2c3715SXin Li * \brief Returns the transformation between two point sets.
59*bf2c3715SXin Li *
60*bf2c3715SXin Li * The algorithm is based on:
61*bf2c3715SXin Li * "Least-squares estimation of transformation parameters between two point patterns",
62*bf2c3715SXin Li * Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
63*bf2c3715SXin Li *
64*bf2c3715SXin Li * It estimates parameters \f$ c, \mathbf{R}, \f$ and \f$ \mathbf{t} \f$ such that
65*bf2c3715SXin Li * \f{align*}
66*bf2c3715SXin Li *   \frac{1}{n} \sum_{i=1}^n \vert\vert y_i - (c\mathbf{R}x_i + \mathbf{t}) \vert\vert_2^2
67*bf2c3715SXin Li * \f}
68*bf2c3715SXin Li * is minimized.
69*bf2c3715SXin Li *
70*bf2c3715SXin Li * The algorithm is based on the analysis of the covariance matrix
71*bf2c3715SXin Li * \f$ \Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{d \times d} \f$
72*bf2c3715SXin Li * of the input point sets \f$ \mathbf{x} \f$ and \f$ \mathbf{y} \f$ where
73*bf2c3715SXin Li * \f$d\f$ is corresponding to the dimension (which is typically small).
74*bf2c3715SXin Li * The analysis is involving the SVD having a complexity of \f$O(d^3)\f$
75*bf2c3715SXin Li * though the actual computational effort lies in the covariance
76*bf2c3715SXin Li * matrix computation which has an asymptotic lower bound of \f$O(dm)\f$ when
77*bf2c3715SXin Li * the input point sets have dimension \f$d \times m\f$.
78*bf2c3715SXin Li *
79*bf2c3715SXin Li * Currently the method is working only for floating point matrices.
80*bf2c3715SXin Li *
81*bf2c3715SXin Li * \todo Should the return type of umeyama() become a Transform?
82*bf2c3715SXin Li *
83*bf2c3715SXin Li * \param src Source points \f$ \mathbf{x} = \left( x_1, \hdots, x_n \right) \f$.
84*bf2c3715SXin Li * \param dst Destination points \f$ \mathbf{y} = \left( y_1, \hdots, y_n \right) \f$.
85*bf2c3715SXin Li * \param with_scaling Sets \f$ c=1 \f$ when <code>false</code> is passed.
86*bf2c3715SXin Li * \return The homogeneous transformation
87*bf2c3715SXin Li * \f{align*}
88*bf2c3715SXin Li *   T = \begin{bmatrix} c\mathbf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}
89*bf2c3715SXin Li * \f}
90*bf2c3715SXin Li * minimizing the residual above. This transformation is always returned as an
91*bf2c3715SXin Li * Eigen::Matrix.
92*bf2c3715SXin Li */
93*bf2c3715SXin Li template <typename Derived, typename OtherDerived>
94*bf2c3715SXin Li typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type
95*bf2c3715SXin Li umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true)
96*bf2c3715SXin Li {
97*bf2c3715SXin Li   typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
98*bf2c3715SXin Li   typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
99*bf2c3715SXin Li   typedef typename NumTraits<Scalar>::Real RealScalar;
100*bf2c3715SXin Li 
101*bf2c3715SXin Li   EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
102*bf2c3715SXin Li   EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
103*bf2c3715SXin Li     YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
104*bf2c3715SXin Li 
105*bf2c3715SXin Li   enum { Dimension = EIGEN_SIZE_MIN_PREFER_DYNAMIC(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
106*bf2c3715SXin Li 
107*bf2c3715SXin Li   typedef Matrix<Scalar, Dimension, 1> VectorType;
108*bf2c3715SXin Li   typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
109*bf2c3715SXin Li   typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
110*bf2c3715SXin Li 
111*bf2c3715SXin Li   const Index m = src.rows(); // dimension
112*bf2c3715SXin Li   const Index n = src.cols(); // number of measurements
113*bf2c3715SXin Li 
114*bf2c3715SXin Li   // required for demeaning ...
115*bf2c3715SXin Li   const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
116*bf2c3715SXin Li 
117*bf2c3715SXin Li   // computation of mean
118*bf2c3715SXin Li   const VectorType src_mean = src.rowwise().sum() * one_over_n;
119*bf2c3715SXin Li   const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
120*bf2c3715SXin Li 
121*bf2c3715SXin Li   // demeaning of src and dst points
122*bf2c3715SXin Li   const RowMajorMatrixType src_demean = src.colwise() - src_mean;
123*bf2c3715SXin Li   const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
124*bf2c3715SXin Li 
125*bf2c3715SXin Li   // Eq. (36)-(37)
126*bf2c3715SXin Li   const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
127*bf2c3715SXin Li 
128*bf2c3715SXin Li   // Eq. (38)
129*bf2c3715SXin Li   const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
130*bf2c3715SXin Li 
131*bf2c3715SXin Li   JacobiSVD<MatrixType> svd(sigma, ComputeFullU | ComputeFullV);
132*bf2c3715SXin Li 
133*bf2c3715SXin Li   // Initialize the resulting transformation with an identity matrix...
134*bf2c3715SXin Li   TransformationMatrixType Rt = TransformationMatrixType::Identity(m+1,m+1);
135*bf2c3715SXin Li 
136*bf2c3715SXin Li   // Eq. (39)
137*bf2c3715SXin Li   VectorType S = VectorType::Ones(m);
138*bf2c3715SXin Li 
139*bf2c3715SXin Li   if  ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 )
140*bf2c3715SXin Li     S(m-1) = -1;
141*bf2c3715SXin Li 
142*bf2c3715SXin Li   // Eq. (40) and (43)
143*bf2c3715SXin Li   Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
144*bf2c3715SXin Li 
145*bf2c3715SXin Li   if (with_scaling)
146*bf2c3715SXin Li   {
147*bf2c3715SXin Li     // Eq. (42)
148*bf2c3715SXin Li     const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
149*bf2c3715SXin Li 
150*bf2c3715SXin Li     // Eq. (41)
151*bf2c3715SXin Li     Rt.col(m).head(m) = dst_mean;
152*bf2c3715SXin Li     Rt.col(m).head(m).noalias() -= c*Rt.topLeftCorner(m,m)*src_mean;
153*bf2c3715SXin Li     Rt.block(0,0,m,m) *= c;
154*bf2c3715SXin Li   }
155*bf2c3715SXin Li   else
156*bf2c3715SXin Li   {
157*bf2c3715SXin Li     Rt.col(m).head(m) = dst_mean;
158*bf2c3715SXin Li     Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m,m)*src_mean;
159*bf2c3715SXin Li   }
160*bf2c3715SXin Li 
161*bf2c3715SXin Li   return Rt;
162*bf2c3715SXin Li }
163*bf2c3715SXin Li 
164*bf2c3715SXin Li } // end namespace Eigen
165*bf2c3715SXin Li 
166*bf2c3715SXin Li #endif // EIGEN_UMEYAMA_H
167