1*67e74705SXin Li //===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2*67e74705SXin Li //
3*67e74705SXin Li // The LLVM Compiler Infrastructure
4*67e74705SXin Li //
5*67e74705SXin Li // This file is distributed under the University of Illinois Open Source
6*67e74705SXin Li // License. See LICENSE.TXT for details.
7*67e74705SXin Li //
8*67e74705SXin Li //===----------------------------------------------------------------------===//
9*67e74705SXin Li //
10*67e74705SXin Li // Implementation of the abstract lowering for the Swift calling convention.
11*67e74705SXin Li //
12*67e74705SXin Li //===----------------------------------------------------------------------===//
13*67e74705SXin Li
14*67e74705SXin Li #include "clang/CodeGen/SwiftCallingConv.h"
15*67e74705SXin Li #include "clang/Basic/TargetInfo.h"
16*67e74705SXin Li #include "CodeGenModule.h"
17*67e74705SXin Li #include "TargetInfo.h"
18*67e74705SXin Li
19*67e74705SXin Li using namespace clang;
20*67e74705SXin Li using namespace CodeGen;
21*67e74705SXin Li using namespace swiftcall;
22*67e74705SXin Li
getSwiftABIInfo(CodeGenModule & CGM)23*67e74705SXin Li static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
24*67e74705SXin Li return cast<SwiftABIInfo>(CGM.getTargetCodeGenInfo().getABIInfo());
25*67e74705SXin Li }
26*67e74705SXin Li
isPowerOf2(unsigned n)27*67e74705SXin Li static bool isPowerOf2(unsigned n) {
28*67e74705SXin Li return n == (n & -n);
29*67e74705SXin Li }
30*67e74705SXin Li
31*67e74705SXin Li /// Given two types with the same size, try to find a common type.
getCommonType(llvm::Type * first,llvm::Type * second)32*67e74705SXin Li static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
33*67e74705SXin Li assert(first != second);
34*67e74705SXin Li
35*67e74705SXin Li // Allow pointers to merge with integers, but prefer the integer type.
36*67e74705SXin Li if (first->isIntegerTy()) {
37*67e74705SXin Li if (second->isPointerTy()) return first;
38*67e74705SXin Li } else if (first->isPointerTy()) {
39*67e74705SXin Li if (second->isIntegerTy()) return second;
40*67e74705SXin Li if (second->isPointerTy()) return first;
41*67e74705SXin Li
42*67e74705SXin Li // Allow two vectors to be merged (given that they have the same size).
43*67e74705SXin Li // This assumes that we never have two different vector register sets.
44*67e74705SXin Li } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
45*67e74705SXin Li if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
46*67e74705SXin Li if (auto commonTy = getCommonType(firstVecTy->getElementType(),
47*67e74705SXin Li secondVecTy->getElementType())) {
48*67e74705SXin Li return (commonTy == firstVecTy->getElementType() ? first : second);
49*67e74705SXin Li }
50*67e74705SXin Li }
51*67e74705SXin Li }
52*67e74705SXin Li
53*67e74705SXin Li return nullptr;
54*67e74705SXin Li }
55*67e74705SXin Li
getTypeStoreSize(CodeGenModule & CGM,llvm::Type * type)56*67e74705SXin Li static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
57*67e74705SXin Li return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
58*67e74705SXin Li }
59*67e74705SXin Li
addTypedData(QualType type,CharUnits begin)60*67e74705SXin Li void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
61*67e74705SXin Li // Deal with various aggregate types as special cases:
62*67e74705SXin Li
63*67e74705SXin Li // Record types.
64*67e74705SXin Li if (auto recType = type->getAs<RecordType>()) {
65*67e74705SXin Li addTypedData(recType->getDecl(), begin);
66*67e74705SXin Li
67*67e74705SXin Li // Array types.
68*67e74705SXin Li } else if (type->isArrayType()) {
69*67e74705SXin Li // Incomplete array types (flexible array members?) don't provide
70*67e74705SXin Li // data to lay out, and the other cases shouldn't be possible.
71*67e74705SXin Li auto arrayType = CGM.getContext().getAsConstantArrayType(type);
72*67e74705SXin Li if (!arrayType) return;
73*67e74705SXin Li
74*67e74705SXin Li QualType eltType = arrayType->getElementType();
75*67e74705SXin Li auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
76*67e74705SXin Li for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
77*67e74705SXin Li addTypedData(eltType, begin + i * eltSize);
78*67e74705SXin Li }
79*67e74705SXin Li
80*67e74705SXin Li // Complex types.
81*67e74705SXin Li } else if (auto complexType = type->getAs<ComplexType>()) {
82*67e74705SXin Li auto eltType = complexType->getElementType();
83*67e74705SXin Li auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
84*67e74705SXin Li auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
85*67e74705SXin Li addTypedData(eltLLVMType, begin, begin + eltSize);
86*67e74705SXin Li addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
87*67e74705SXin Li
88*67e74705SXin Li // Member pointer types.
89*67e74705SXin Li } else if (type->getAs<MemberPointerType>()) {
90*67e74705SXin Li // Just add it all as opaque.
91*67e74705SXin Li addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
92*67e74705SXin Li
93*67e74705SXin Li // Everything else is scalar and should not convert as an LLVM aggregate.
94*67e74705SXin Li } else {
95*67e74705SXin Li // We intentionally convert as !ForMem because we want to preserve
96*67e74705SXin Li // that a type was an i1.
97*67e74705SXin Li auto llvmType = CGM.getTypes().ConvertType(type);
98*67e74705SXin Li addTypedData(llvmType, begin);
99*67e74705SXin Li }
100*67e74705SXin Li }
101*67e74705SXin Li
addTypedData(const RecordDecl * record,CharUnits begin)102*67e74705SXin Li void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
103*67e74705SXin Li addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
104*67e74705SXin Li }
105*67e74705SXin Li
addTypedData(const RecordDecl * record,CharUnits begin,const ASTRecordLayout & layout)106*67e74705SXin Li void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
107*67e74705SXin Li const ASTRecordLayout &layout) {
108*67e74705SXin Li // Unions are a special case.
109*67e74705SXin Li if (record->isUnion()) {
110*67e74705SXin Li for (auto field : record->fields()) {
111*67e74705SXin Li if (field->isBitField()) {
112*67e74705SXin Li addBitFieldData(field, begin, 0);
113*67e74705SXin Li } else {
114*67e74705SXin Li addTypedData(field->getType(), begin);
115*67e74705SXin Li }
116*67e74705SXin Li }
117*67e74705SXin Li return;
118*67e74705SXin Li }
119*67e74705SXin Li
120*67e74705SXin Li // Note that correctness does not rely on us adding things in
121*67e74705SXin Li // their actual order of layout; it's just somewhat more efficient
122*67e74705SXin Li // for the builder.
123*67e74705SXin Li
124*67e74705SXin Li // With that in mind, add "early" C++ data.
125*67e74705SXin Li auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
126*67e74705SXin Li if (cxxRecord) {
127*67e74705SXin Li // - a v-table pointer, if the class adds its own
128*67e74705SXin Li if (layout.hasOwnVFPtr()) {
129*67e74705SXin Li addTypedData(CGM.Int8PtrTy, begin);
130*67e74705SXin Li }
131*67e74705SXin Li
132*67e74705SXin Li // - non-virtual bases
133*67e74705SXin Li for (auto &baseSpecifier : cxxRecord->bases()) {
134*67e74705SXin Li if (baseSpecifier.isVirtual()) continue;
135*67e74705SXin Li
136*67e74705SXin Li auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
137*67e74705SXin Li addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
138*67e74705SXin Li }
139*67e74705SXin Li
140*67e74705SXin Li // - a vbptr if the class adds its own
141*67e74705SXin Li if (layout.hasOwnVBPtr()) {
142*67e74705SXin Li addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
143*67e74705SXin Li }
144*67e74705SXin Li }
145*67e74705SXin Li
146*67e74705SXin Li // Add fields.
147*67e74705SXin Li for (auto field : record->fields()) {
148*67e74705SXin Li auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
149*67e74705SXin Li if (field->isBitField()) {
150*67e74705SXin Li addBitFieldData(field, begin, fieldOffsetInBits);
151*67e74705SXin Li } else {
152*67e74705SXin Li addTypedData(field->getType(),
153*67e74705SXin Li begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
154*67e74705SXin Li }
155*67e74705SXin Li }
156*67e74705SXin Li
157*67e74705SXin Li // Add "late" C++ data:
158*67e74705SXin Li if (cxxRecord) {
159*67e74705SXin Li // - virtual bases
160*67e74705SXin Li for (auto &vbaseSpecifier : cxxRecord->vbases()) {
161*67e74705SXin Li auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
162*67e74705SXin Li addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
163*67e74705SXin Li }
164*67e74705SXin Li }
165*67e74705SXin Li }
166*67e74705SXin Li
addBitFieldData(const FieldDecl * bitfield,CharUnits recordBegin,uint64_t bitfieldBitBegin)167*67e74705SXin Li void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
168*67e74705SXin Li CharUnits recordBegin,
169*67e74705SXin Li uint64_t bitfieldBitBegin) {
170*67e74705SXin Li assert(bitfield->isBitField());
171*67e74705SXin Li auto &ctx = CGM.getContext();
172*67e74705SXin Li auto width = bitfield->getBitWidthValue(ctx);
173*67e74705SXin Li
174*67e74705SXin Li // We can ignore zero-width bit-fields.
175*67e74705SXin Li if (width == 0) return;
176*67e74705SXin Li
177*67e74705SXin Li // toCharUnitsFromBits rounds down.
178*67e74705SXin Li CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
179*67e74705SXin Li
180*67e74705SXin Li // Find the offset of the last byte that is partially occupied by the
181*67e74705SXin Li // bit-field; since we otherwise expect exclusive ends, the end is the
182*67e74705SXin Li // next byte.
183*67e74705SXin Li uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
184*67e74705SXin Li CharUnits bitfieldByteEnd =
185*67e74705SXin Li ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
186*67e74705SXin Li addOpaqueData(recordBegin + bitfieldByteBegin,
187*67e74705SXin Li recordBegin + bitfieldByteEnd);
188*67e74705SXin Li }
189*67e74705SXin Li
addTypedData(llvm::Type * type,CharUnits begin)190*67e74705SXin Li void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
191*67e74705SXin Li assert(type && "didn't provide type for typed data");
192*67e74705SXin Li addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
193*67e74705SXin Li }
194*67e74705SXin Li
addTypedData(llvm::Type * type,CharUnits begin,CharUnits end)195*67e74705SXin Li void SwiftAggLowering::addTypedData(llvm::Type *type,
196*67e74705SXin Li CharUnits begin, CharUnits end) {
197*67e74705SXin Li assert(type && "didn't provide type for typed data");
198*67e74705SXin Li assert(getTypeStoreSize(CGM, type) == end - begin);
199*67e74705SXin Li
200*67e74705SXin Li // Legalize vector types.
201*67e74705SXin Li if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
202*67e74705SXin Li SmallVector<llvm::Type*, 4> componentTys;
203*67e74705SXin Li legalizeVectorType(CGM, end - begin, vecTy, componentTys);
204*67e74705SXin Li assert(componentTys.size() >= 1);
205*67e74705SXin Li
206*67e74705SXin Li // Walk the initial components.
207*67e74705SXin Li for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
208*67e74705SXin Li llvm::Type *componentTy = componentTys[i];
209*67e74705SXin Li auto componentSize = getTypeStoreSize(CGM, componentTy);
210*67e74705SXin Li assert(componentSize < end - begin);
211*67e74705SXin Li addLegalTypedData(componentTy, begin, begin + componentSize);
212*67e74705SXin Li begin += componentSize;
213*67e74705SXin Li }
214*67e74705SXin Li
215*67e74705SXin Li return addLegalTypedData(componentTys.back(), begin, end);
216*67e74705SXin Li }
217*67e74705SXin Li
218*67e74705SXin Li // Legalize integer types.
219*67e74705SXin Li if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
220*67e74705SXin Li if (!isLegalIntegerType(CGM, intTy))
221*67e74705SXin Li return addOpaqueData(begin, end);
222*67e74705SXin Li }
223*67e74705SXin Li
224*67e74705SXin Li // All other types should be legal.
225*67e74705SXin Li return addLegalTypedData(type, begin, end);
226*67e74705SXin Li }
227*67e74705SXin Li
addLegalTypedData(llvm::Type * type,CharUnits begin,CharUnits end)228*67e74705SXin Li void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
229*67e74705SXin Li CharUnits begin, CharUnits end) {
230*67e74705SXin Li // Require the type to be naturally aligned.
231*67e74705SXin Li if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
232*67e74705SXin Li
233*67e74705SXin Li // Try splitting vector types.
234*67e74705SXin Li if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
235*67e74705SXin Li auto split = splitLegalVectorType(CGM, end - begin, vecTy);
236*67e74705SXin Li auto eltTy = split.first;
237*67e74705SXin Li auto numElts = split.second;
238*67e74705SXin Li
239*67e74705SXin Li auto eltSize = (end - begin) / numElts;
240*67e74705SXin Li assert(eltSize == getTypeStoreSize(CGM, eltTy));
241*67e74705SXin Li for (size_t i = 0, e = numElts; i != e; ++i) {
242*67e74705SXin Li addLegalTypedData(eltTy, begin, begin + eltSize);
243*67e74705SXin Li begin += eltSize;
244*67e74705SXin Li }
245*67e74705SXin Li assert(begin == end);
246*67e74705SXin Li return;
247*67e74705SXin Li }
248*67e74705SXin Li
249*67e74705SXin Li return addOpaqueData(begin, end);
250*67e74705SXin Li }
251*67e74705SXin Li
252*67e74705SXin Li addEntry(type, begin, end);
253*67e74705SXin Li }
254*67e74705SXin Li
addEntry(llvm::Type * type,CharUnits begin,CharUnits end)255*67e74705SXin Li void SwiftAggLowering::addEntry(llvm::Type *type,
256*67e74705SXin Li CharUnits begin, CharUnits end) {
257*67e74705SXin Li assert((!type ||
258*67e74705SXin Li (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
259*67e74705SXin Li "cannot add aggregate-typed data");
260*67e74705SXin Li assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
261*67e74705SXin Li
262*67e74705SXin Li // Fast path: we can just add entries to the end.
263*67e74705SXin Li if (Entries.empty() || Entries.back().End <= begin) {
264*67e74705SXin Li Entries.push_back({begin, end, type});
265*67e74705SXin Li return;
266*67e74705SXin Li }
267*67e74705SXin Li
268*67e74705SXin Li // Find the first existing entry that ends after the start of the new data.
269*67e74705SXin Li // TODO: do a binary search if Entries is big enough for it to matter.
270*67e74705SXin Li size_t index = Entries.size() - 1;
271*67e74705SXin Li while (index != 0) {
272*67e74705SXin Li if (Entries[index - 1].End <= begin) break;
273*67e74705SXin Li --index;
274*67e74705SXin Li }
275*67e74705SXin Li
276*67e74705SXin Li // The entry ends after the start of the new data.
277*67e74705SXin Li // If the entry starts after the end of the new data, there's no conflict.
278*67e74705SXin Li if (Entries[index].Begin >= end) {
279*67e74705SXin Li // This insertion is potentially O(n), but the way we generally build
280*67e74705SXin Li // these layouts makes that unlikely to matter: we'd need a union of
281*67e74705SXin Li // several very large types.
282*67e74705SXin Li Entries.insert(Entries.begin() + index, {begin, end, type});
283*67e74705SXin Li return;
284*67e74705SXin Li }
285*67e74705SXin Li
286*67e74705SXin Li // Otherwise, the ranges overlap. The new range might also overlap
287*67e74705SXin Li // with later ranges.
288*67e74705SXin Li restartAfterSplit:
289*67e74705SXin Li
290*67e74705SXin Li // Simplest case: an exact overlap.
291*67e74705SXin Li if (Entries[index].Begin == begin && Entries[index].End == end) {
292*67e74705SXin Li // If the types match exactly, great.
293*67e74705SXin Li if (Entries[index].Type == type) return;
294*67e74705SXin Li
295*67e74705SXin Li // If either type is opaque, make the entry opaque and return.
296*67e74705SXin Li if (Entries[index].Type == nullptr) {
297*67e74705SXin Li return;
298*67e74705SXin Li } else if (type == nullptr) {
299*67e74705SXin Li Entries[index].Type = nullptr;
300*67e74705SXin Li return;
301*67e74705SXin Li }
302*67e74705SXin Li
303*67e74705SXin Li // If they disagree in an ABI-agnostic way, just resolve the conflict
304*67e74705SXin Li // arbitrarily.
305*67e74705SXin Li if (auto entryType = getCommonType(Entries[index].Type, type)) {
306*67e74705SXin Li Entries[index].Type = entryType;
307*67e74705SXin Li return;
308*67e74705SXin Li }
309*67e74705SXin Li
310*67e74705SXin Li // Otherwise, make the entry opaque.
311*67e74705SXin Li Entries[index].Type = nullptr;
312*67e74705SXin Li return;
313*67e74705SXin Li }
314*67e74705SXin Li
315*67e74705SXin Li // Okay, we have an overlapping conflict of some sort.
316*67e74705SXin Li
317*67e74705SXin Li // If we have a vector type, split it.
318*67e74705SXin Li if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
319*67e74705SXin Li auto eltTy = vecTy->getElementType();
320*67e74705SXin Li CharUnits eltSize = (end - begin) / vecTy->getNumElements();
321*67e74705SXin Li assert(eltSize == getTypeStoreSize(CGM, eltTy));
322*67e74705SXin Li for (unsigned i = 0, e = vecTy->getNumElements(); i != e; ++i) {
323*67e74705SXin Li addEntry(eltTy, begin, begin + eltSize);
324*67e74705SXin Li begin += eltSize;
325*67e74705SXin Li }
326*67e74705SXin Li assert(begin == end);
327*67e74705SXin Li return;
328*67e74705SXin Li }
329*67e74705SXin Li
330*67e74705SXin Li // If the entry is a vector type, split it and try again.
331*67e74705SXin Li if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
332*67e74705SXin Li splitVectorEntry(index);
333*67e74705SXin Li goto restartAfterSplit;
334*67e74705SXin Li }
335*67e74705SXin Li
336*67e74705SXin Li // Okay, we have no choice but to make the existing entry opaque.
337*67e74705SXin Li
338*67e74705SXin Li Entries[index].Type = nullptr;
339*67e74705SXin Li
340*67e74705SXin Li // Stretch the start of the entry to the beginning of the range.
341*67e74705SXin Li if (begin < Entries[index].Begin) {
342*67e74705SXin Li Entries[index].Begin = begin;
343*67e74705SXin Li assert(index == 0 || begin >= Entries[index - 1].End);
344*67e74705SXin Li }
345*67e74705SXin Li
346*67e74705SXin Li // Stretch the end of the entry to the end of the range; but if we run
347*67e74705SXin Li // into the start of the next entry, just leave the range there and repeat.
348*67e74705SXin Li while (end > Entries[index].End) {
349*67e74705SXin Li assert(Entries[index].Type == nullptr);
350*67e74705SXin Li
351*67e74705SXin Li // If the range doesn't overlap the next entry, we're done.
352*67e74705SXin Li if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
353*67e74705SXin Li Entries[index].End = end;
354*67e74705SXin Li break;
355*67e74705SXin Li }
356*67e74705SXin Li
357*67e74705SXin Li // Otherwise, stretch to the start of the next entry.
358*67e74705SXin Li Entries[index].End = Entries[index + 1].Begin;
359*67e74705SXin Li
360*67e74705SXin Li // Continue with the next entry.
361*67e74705SXin Li index++;
362*67e74705SXin Li
363*67e74705SXin Li // This entry needs to be made opaque if it is not already.
364*67e74705SXin Li if (Entries[index].Type == nullptr)
365*67e74705SXin Li continue;
366*67e74705SXin Li
367*67e74705SXin Li // Split vector entries unless we completely subsume them.
368*67e74705SXin Li if (Entries[index].Type->isVectorTy() &&
369*67e74705SXin Li end < Entries[index].End) {
370*67e74705SXin Li splitVectorEntry(index);
371*67e74705SXin Li }
372*67e74705SXin Li
373*67e74705SXin Li // Make the entry opaque.
374*67e74705SXin Li Entries[index].Type = nullptr;
375*67e74705SXin Li }
376*67e74705SXin Li }
377*67e74705SXin Li
378*67e74705SXin Li /// Replace the entry of vector type at offset 'index' with a sequence
379*67e74705SXin Li /// of its component vectors.
splitVectorEntry(unsigned index)380*67e74705SXin Li void SwiftAggLowering::splitVectorEntry(unsigned index) {
381*67e74705SXin Li auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
382*67e74705SXin Li auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
383*67e74705SXin Li
384*67e74705SXin Li auto eltTy = split.first;
385*67e74705SXin Li CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
386*67e74705SXin Li auto numElts = split.second;
387*67e74705SXin Li Entries.insert(&Entries[index + 1], numElts - 1, StorageEntry());
388*67e74705SXin Li
389*67e74705SXin Li CharUnits begin = Entries[index].Begin;
390*67e74705SXin Li for (unsigned i = 0; i != numElts; ++i) {
391*67e74705SXin Li Entries[index].Type = eltTy;
392*67e74705SXin Li Entries[index].Begin = begin;
393*67e74705SXin Li Entries[index].End = begin + eltSize;
394*67e74705SXin Li begin += eltSize;
395*67e74705SXin Li }
396*67e74705SXin Li }
397*67e74705SXin Li
398*67e74705SXin Li /// Given a power-of-two unit size, return the offset of the aligned unit
399*67e74705SXin Li /// of that size which contains the given offset.
400*67e74705SXin Li ///
401*67e74705SXin Li /// In other words, round down to the nearest multiple of the unit size.
getOffsetAtStartOfUnit(CharUnits offset,CharUnits unitSize)402*67e74705SXin Li static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
403*67e74705SXin Li assert(isPowerOf2(unitSize.getQuantity()));
404*67e74705SXin Li auto unitMask = ~(unitSize.getQuantity() - 1);
405*67e74705SXin Li return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
406*67e74705SXin Li }
407*67e74705SXin Li
areBytesInSameUnit(CharUnits first,CharUnits second,CharUnits chunkSize)408*67e74705SXin Li static bool areBytesInSameUnit(CharUnits first, CharUnits second,
409*67e74705SXin Li CharUnits chunkSize) {
410*67e74705SXin Li return getOffsetAtStartOfUnit(first, chunkSize)
411*67e74705SXin Li == getOffsetAtStartOfUnit(second, chunkSize);
412*67e74705SXin Li }
413*67e74705SXin Li
finish()414*67e74705SXin Li void SwiftAggLowering::finish() {
415*67e74705SXin Li if (Entries.empty()) {
416*67e74705SXin Li Finished = true;
417*67e74705SXin Li return;
418*67e74705SXin Li }
419*67e74705SXin Li
420*67e74705SXin Li // We logically split the layout down into a series of chunks of this size,
421*67e74705SXin Li // which is generally the size of a pointer.
422*67e74705SXin Li const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
423*67e74705SXin Li
424*67e74705SXin Li // First pass: if two entries share a chunk, make them both opaque
425*67e74705SXin Li // and stretch one to meet the next.
426*67e74705SXin Li bool hasOpaqueEntries = (Entries[0].Type == nullptr);
427*67e74705SXin Li for (size_t i = 1, e = Entries.size(); i != e; ++i) {
428*67e74705SXin Li if (areBytesInSameUnit(Entries[i - 1].End - CharUnits::One(),
429*67e74705SXin Li Entries[i].Begin, chunkSize)) {
430*67e74705SXin Li Entries[i - 1].Type = nullptr;
431*67e74705SXin Li Entries[i].Type = nullptr;
432*67e74705SXin Li Entries[i - 1].End = Entries[i].Begin;
433*67e74705SXin Li hasOpaqueEntries = true;
434*67e74705SXin Li
435*67e74705SXin Li } else if (Entries[i].Type == nullptr) {
436*67e74705SXin Li hasOpaqueEntries = true;
437*67e74705SXin Li }
438*67e74705SXin Li }
439*67e74705SXin Li
440*67e74705SXin Li // The rest of the algorithm leaves non-opaque entries alone, so if we
441*67e74705SXin Li // have no opaque entries, we're done.
442*67e74705SXin Li if (!hasOpaqueEntries) {
443*67e74705SXin Li Finished = true;
444*67e74705SXin Li return;
445*67e74705SXin Li }
446*67e74705SXin Li
447*67e74705SXin Li // Okay, move the entries to a temporary and rebuild Entries.
448*67e74705SXin Li auto orig = std::move(Entries);
449*67e74705SXin Li assert(Entries.empty());
450*67e74705SXin Li
451*67e74705SXin Li for (size_t i = 0, e = orig.size(); i != e; ++i) {
452*67e74705SXin Li // Just copy over non-opaque entries.
453*67e74705SXin Li if (orig[i].Type != nullptr) {
454*67e74705SXin Li Entries.push_back(orig[i]);
455*67e74705SXin Li continue;
456*67e74705SXin Li }
457*67e74705SXin Li
458*67e74705SXin Li // Scan forward to determine the full extent of the next opaque range.
459*67e74705SXin Li // We know from the first pass that only contiguous ranges will overlap
460*67e74705SXin Li // the same aligned chunk.
461*67e74705SXin Li auto begin = orig[i].Begin;
462*67e74705SXin Li auto end = orig[i].End;
463*67e74705SXin Li while (i + 1 != e &&
464*67e74705SXin Li orig[i + 1].Type == nullptr &&
465*67e74705SXin Li end == orig[i + 1].Begin) {
466*67e74705SXin Li end = orig[i + 1].End;
467*67e74705SXin Li i++;
468*67e74705SXin Li }
469*67e74705SXin Li
470*67e74705SXin Li // Add an entry per intersected chunk.
471*67e74705SXin Li do {
472*67e74705SXin Li // Find the smallest aligned storage unit in the maximal aligned
473*67e74705SXin Li // storage unit containing 'begin' that contains all the bytes in
474*67e74705SXin Li // the intersection between the range and this chunk.
475*67e74705SXin Li CharUnits localBegin = begin;
476*67e74705SXin Li CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
477*67e74705SXin Li CharUnits chunkEnd = chunkBegin + chunkSize;
478*67e74705SXin Li CharUnits localEnd = std::min(end, chunkEnd);
479*67e74705SXin Li
480*67e74705SXin Li // Just do a simple loop over ever-increasing unit sizes.
481*67e74705SXin Li CharUnits unitSize = CharUnits::One();
482*67e74705SXin Li CharUnits unitBegin, unitEnd;
483*67e74705SXin Li for (; ; unitSize *= 2) {
484*67e74705SXin Li assert(unitSize <= chunkSize);
485*67e74705SXin Li unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
486*67e74705SXin Li unitEnd = unitBegin + unitSize;
487*67e74705SXin Li if (unitEnd >= localEnd) break;
488*67e74705SXin Li }
489*67e74705SXin Li
490*67e74705SXin Li // Add an entry for this unit.
491*67e74705SXin Li auto entryTy =
492*67e74705SXin Li llvm::IntegerType::get(CGM.getLLVMContext(),
493*67e74705SXin Li CGM.getContext().toBits(unitSize));
494*67e74705SXin Li Entries.push_back({unitBegin, unitEnd, entryTy});
495*67e74705SXin Li
496*67e74705SXin Li // The next chunk starts where this chunk left off.
497*67e74705SXin Li begin = localEnd;
498*67e74705SXin Li } while (begin != end);
499*67e74705SXin Li }
500*67e74705SXin Li
501*67e74705SXin Li // Okay, finally finished.
502*67e74705SXin Li Finished = true;
503*67e74705SXin Li }
504*67e74705SXin Li
enumerateComponents(EnumerationCallback callback) const505*67e74705SXin Li void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
506*67e74705SXin Li assert(Finished && "haven't yet finished lowering");
507*67e74705SXin Li
508*67e74705SXin Li for (auto &entry : Entries) {
509*67e74705SXin Li callback(entry.Begin, entry.Type);
510*67e74705SXin Li }
511*67e74705SXin Li }
512*67e74705SXin Li
513*67e74705SXin Li std::pair<llvm::StructType*, llvm::Type*>
getCoerceAndExpandTypes() const514*67e74705SXin Li SwiftAggLowering::getCoerceAndExpandTypes() const {
515*67e74705SXin Li assert(Finished && "haven't yet finished lowering");
516*67e74705SXin Li
517*67e74705SXin Li auto &ctx = CGM.getLLVMContext();
518*67e74705SXin Li
519*67e74705SXin Li if (Entries.empty()) {
520*67e74705SXin Li auto type = llvm::StructType::get(ctx);
521*67e74705SXin Li return { type, type };
522*67e74705SXin Li }
523*67e74705SXin Li
524*67e74705SXin Li SmallVector<llvm::Type*, 8> elts;
525*67e74705SXin Li CharUnits lastEnd = CharUnits::Zero();
526*67e74705SXin Li bool hasPadding = false;
527*67e74705SXin Li bool packed = false;
528*67e74705SXin Li for (auto &entry : Entries) {
529*67e74705SXin Li if (entry.Begin != lastEnd) {
530*67e74705SXin Li auto paddingSize = entry.Begin - lastEnd;
531*67e74705SXin Li assert(!paddingSize.isNegative());
532*67e74705SXin Li
533*67e74705SXin Li auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
534*67e74705SXin Li paddingSize.getQuantity());
535*67e74705SXin Li elts.push_back(padding);
536*67e74705SXin Li hasPadding = true;
537*67e74705SXin Li }
538*67e74705SXin Li
539*67e74705SXin Li if (!packed && !entry.Begin.isMultipleOf(
540*67e74705SXin Li CharUnits::fromQuantity(
541*67e74705SXin Li CGM.getDataLayout().getABITypeAlignment(entry.Type))))
542*67e74705SXin Li packed = true;
543*67e74705SXin Li
544*67e74705SXin Li elts.push_back(entry.Type);
545*67e74705SXin Li lastEnd = entry.End;
546*67e74705SXin Li }
547*67e74705SXin Li
548*67e74705SXin Li // We don't need to adjust 'packed' to deal with possible tail padding
549*67e74705SXin Li // because we never do that kind of access through the coercion type.
550*67e74705SXin Li auto coercionType = llvm::StructType::get(ctx, elts, packed);
551*67e74705SXin Li
552*67e74705SXin Li llvm::Type *unpaddedType = coercionType;
553*67e74705SXin Li if (hasPadding) {
554*67e74705SXin Li elts.clear();
555*67e74705SXin Li for (auto &entry : Entries) {
556*67e74705SXin Li elts.push_back(entry.Type);
557*67e74705SXin Li }
558*67e74705SXin Li if (elts.size() == 1) {
559*67e74705SXin Li unpaddedType = elts[0];
560*67e74705SXin Li } else {
561*67e74705SXin Li unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
562*67e74705SXin Li }
563*67e74705SXin Li } else if (Entries.size() == 1) {
564*67e74705SXin Li unpaddedType = Entries[0].Type;
565*67e74705SXin Li }
566*67e74705SXin Li
567*67e74705SXin Li return { coercionType, unpaddedType };
568*67e74705SXin Li }
569*67e74705SXin Li
shouldPassIndirectly(bool asReturnValue) const570*67e74705SXin Li bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
571*67e74705SXin Li assert(Finished && "haven't yet finished lowering");
572*67e74705SXin Li
573*67e74705SXin Li // Empty types don't need to be passed indirectly.
574*67e74705SXin Li if (Entries.empty()) return false;
575*67e74705SXin Li
576*67e74705SXin Li CharUnits totalSize = Entries.back().End;
577*67e74705SXin Li
578*67e74705SXin Li // Avoid copying the array of types when there's just a single element.
579*67e74705SXin Li if (Entries.size() == 1) {
580*67e74705SXin Li return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
581*67e74705SXin Li Entries.back().Type,
582*67e74705SXin Li asReturnValue);
583*67e74705SXin Li }
584*67e74705SXin Li
585*67e74705SXin Li SmallVector<llvm::Type*, 8> componentTys;
586*67e74705SXin Li componentTys.reserve(Entries.size());
587*67e74705SXin Li for (auto &entry : Entries) {
588*67e74705SXin Li componentTys.push_back(entry.Type);
589*67e74705SXin Li }
590*67e74705SXin Li return getSwiftABIInfo(CGM).shouldPassIndirectlyForSwift(totalSize,
591*67e74705SXin Li componentTys,
592*67e74705SXin Li asReturnValue);
593*67e74705SXin Li }
594*67e74705SXin Li
getMaximumVoluntaryIntegerSize(CodeGenModule & CGM)595*67e74705SXin Li CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
596*67e74705SXin Li // Currently always the size of an ordinary pointer.
597*67e74705SXin Li return CGM.getContext().toCharUnitsFromBits(
598*67e74705SXin Li CGM.getContext().getTargetInfo().getPointerWidth(0));
599*67e74705SXin Li }
600*67e74705SXin Li
getNaturalAlignment(CodeGenModule & CGM,llvm::Type * type)601*67e74705SXin Li CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
602*67e74705SXin Li // For Swift's purposes, this is always just the store size of the type
603*67e74705SXin Li // rounded up to a power of 2.
604*67e74705SXin Li auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
605*67e74705SXin Li if (!isPowerOf2(size)) {
606*67e74705SXin Li size = 1ULL << (llvm::findLastSet(size, llvm::ZB_Undefined) + 1);
607*67e74705SXin Li }
608*67e74705SXin Li assert(size >= CGM.getDataLayout().getABITypeAlignment(type));
609*67e74705SXin Li return CharUnits::fromQuantity(size);
610*67e74705SXin Li }
611*67e74705SXin Li
isLegalIntegerType(CodeGenModule & CGM,llvm::IntegerType * intTy)612*67e74705SXin Li bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
613*67e74705SXin Li llvm::IntegerType *intTy) {
614*67e74705SXin Li auto size = intTy->getBitWidth();
615*67e74705SXin Li switch (size) {
616*67e74705SXin Li case 1:
617*67e74705SXin Li case 8:
618*67e74705SXin Li case 16:
619*67e74705SXin Li case 32:
620*67e74705SXin Li case 64:
621*67e74705SXin Li // Just assume that the above are always legal.
622*67e74705SXin Li return true;
623*67e74705SXin Li
624*67e74705SXin Li case 128:
625*67e74705SXin Li return CGM.getContext().getTargetInfo().hasInt128Type();
626*67e74705SXin Li
627*67e74705SXin Li default:
628*67e74705SXin Li return false;
629*67e74705SXin Li }
630*67e74705SXin Li }
631*67e74705SXin Li
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)632*67e74705SXin Li bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
633*67e74705SXin Li llvm::VectorType *vectorTy) {
634*67e74705SXin Li return isLegalVectorType(CGM, vectorSize, vectorTy->getElementType(),
635*67e74705SXin Li vectorTy->getNumElements());
636*67e74705SXin Li }
637*67e74705SXin Li
isLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::Type * eltTy,unsigned numElts)638*67e74705SXin Li bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
639*67e74705SXin Li llvm::Type *eltTy, unsigned numElts) {
640*67e74705SXin Li assert(numElts > 1 && "illegal vector length");
641*67e74705SXin Li return getSwiftABIInfo(CGM)
642*67e74705SXin Li .isLegalVectorTypeForSwift(vectorSize, eltTy, numElts);
643*67e74705SXin Li }
644*67e74705SXin Li
645*67e74705SXin Li std::pair<llvm::Type*, unsigned>
splitLegalVectorType(CodeGenModule & CGM,CharUnits vectorSize,llvm::VectorType * vectorTy)646*67e74705SXin Li swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
647*67e74705SXin Li llvm::VectorType *vectorTy) {
648*67e74705SXin Li auto numElts = vectorTy->getNumElements();
649*67e74705SXin Li auto eltTy = vectorTy->getElementType();
650*67e74705SXin Li
651*67e74705SXin Li // Try to split the vector type in half.
652*67e74705SXin Li if (numElts >= 4 && isPowerOf2(numElts)) {
653*67e74705SXin Li if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
654*67e74705SXin Li return {llvm::VectorType::get(eltTy, numElts / 2), 2};
655*67e74705SXin Li }
656*67e74705SXin Li
657*67e74705SXin Li return {eltTy, numElts};
658*67e74705SXin Li }
659*67e74705SXin Li
legalizeVectorType(CodeGenModule & CGM,CharUnits origVectorSize,llvm::VectorType * origVectorTy,llvm::SmallVectorImpl<llvm::Type * > & components)660*67e74705SXin Li void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
661*67e74705SXin Li llvm::VectorType *origVectorTy,
662*67e74705SXin Li llvm::SmallVectorImpl<llvm::Type*> &components) {
663*67e74705SXin Li // If it's already a legal vector type, use it.
664*67e74705SXin Li if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
665*67e74705SXin Li components.push_back(origVectorTy);
666*67e74705SXin Li return;
667*67e74705SXin Li }
668*67e74705SXin Li
669*67e74705SXin Li // Try to split the vector into legal subvectors.
670*67e74705SXin Li auto numElts = origVectorTy->getNumElements();
671*67e74705SXin Li auto eltTy = origVectorTy->getElementType();
672*67e74705SXin Li assert(numElts != 1);
673*67e74705SXin Li
674*67e74705SXin Li // The largest size that we're still considering making subvectors of.
675*67e74705SXin Li // Always a power of 2.
676*67e74705SXin Li unsigned logCandidateNumElts = llvm::findLastSet(numElts, llvm::ZB_Undefined);
677*67e74705SXin Li unsigned candidateNumElts = 1U << logCandidateNumElts;
678*67e74705SXin Li assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
679*67e74705SXin Li
680*67e74705SXin Li // Minor optimization: don't check the legality of this exact size twice.
681*67e74705SXin Li if (candidateNumElts == numElts) {
682*67e74705SXin Li logCandidateNumElts--;
683*67e74705SXin Li candidateNumElts >>= 1;
684*67e74705SXin Li }
685*67e74705SXin Li
686*67e74705SXin Li CharUnits eltSize = (origVectorSize / numElts);
687*67e74705SXin Li CharUnits candidateSize = eltSize * candidateNumElts;
688*67e74705SXin Li
689*67e74705SXin Li // The sensibility of this algorithm relies on the fact that we never
690*67e74705SXin Li // have a legal non-power-of-2 vector size without having the power of 2
691*67e74705SXin Li // also be legal.
692*67e74705SXin Li while (logCandidateNumElts > 0) {
693*67e74705SXin Li assert(candidateNumElts == 1U << logCandidateNumElts);
694*67e74705SXin Li assert(candidateNumElts <= numElts);
695*67e74705SXin Li assert(candidateSize == eltSize * candidateNumElts);
696*67e74705SXin Li
697*67e74705SXin Li // Skip illegal vector sizes.
698*67e74705SXin Li if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
699*67e74705SXin Li logCandidateNumElts--;
700*67e74705SXin Li candidateNumElts /= 2;
701*67e74705SXin Li candidateSize /= 2;
702*67e74705SXin Li continue;
703*67e74705SXin Li }
704*67e74705SXin Li
705*67e74705SXin Li // Add the right number of vectors of this size.
706*67e74705SXin Li auto numVecs = numElts >> logCandidateNumElts;
707*67e74705SXin Li components.append(numVecs, llvm::VectorType::get(eltTy, candidateNumElts));
708*67e74705SXin Li numElts -= (numVecs << logCandidateNumElts);
709*67e74705SXin Li
710*67e74705SXin Li if (numElts == 0) return;
711*67e74705SXin Li
712*67e74705SXin Li // It's possible that the number of elements remaining will be legal.
713*67e74705SXin Li // This can happen with e.g. <7 x float> when <3 x float> is legal.
714*67e74705SXin Li // This only needs to be separately checked if it's not a power of 2.
715*67e74705SXin Li if (numElts > 2 && !isPowerOf2(numElts) &&
716*67e74705SXin Li isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
717*67e74705SXin Li components.push_back(llvm::VectorType::get(eltTy, numElts));
718*67e74705SXin Li return;
719*67e74705SXin Li }
720*67e74705SXin Li
721*67e74705SXin Li // Bring vecSize down to something no larger than numElts.
722*67e74705SXin Li do {
723*67e74705SXin Li logCandidateNumElts--;
724*67e74705SXin Li candidateNumElts /= 2;
725*67e74705SXin Li candidateSize /= 2;
726*67e74705SXin Li } while (candidateNumElts > numElts);
727*67e74705SXin Li }
728*67e74705SXin Li
729*67e74705SXin Li // Otherwise, just append a bunch of individual elements.
730*67e74705SXin Li components.append(numElts, eltTy);
731*67e74705SXin Li }
732*67e74705SXin Li
shouldPassCXXRecordIndirectly(CodeGenModule & CGM,const CXXRecordDecl * record)733*67e74705SXin Li bool swiftcall::shouldPassCXXRecordIndirectly(CodeGenModule &CGM,
734*67e74705SXin Li const CXXRecordDecl *record) {
735*67e74705SXin Li // Following a recommendation from Richard Smith, pass a C++ type
736*67e74705SXin Li // indirectly only if the destructor is non-trivial or *all* of the
737*67e74705SXin Li // copy/move constructors are deleted or non-trivial.
738*67e74705SXin Li
739*67e74705SXin Li if (record->hasNonTrivialDestructor())
740*67e74705SXin Li return true;
741*67e74705SXin Li
742*67e74705SXin Li // It would be nice if this were summarized on the CXXRecordDecl.
743*67e74705SXin Li for (auto ctor : record->ctors()) {
744*67e74705SXin Li if (ctor->isCopyOrMoveConstructor() && !ctor->isDeleted() &&
745*67e74705SXin Li ctor->isTrivial()) {
746*67e74705SXin Li return false;
747*67e74705SXin Li }
748*67e74705SXin Li }
749*67e74705SXin Li
750*67e74705SXin Li return true;
751*67e74705SXin Li }
752*67e74705SXin Li
classifyExpandedType(SwiftAggLowering & lowering,bool forReturn,CharUnits alignmentForIndirect)753*67e74705SXin Li static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
754*67e74705SXin Li bool forReturn,
755*67e74705SXin Li CharUnits alignmentForIndirect) {
756*67e74705SXin Li if (lowering.empty()) {
757*67e74705SXin Li return ABIArgInfo::getIgnore();
758*67e74705SXin Li } else if (lowering.shouldPassIndirectly(forReturn)) {
759*67e74705SXin Li return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
760*67e74705SXin Li } else {
761*67e74705SXin Li auto types = lowering.getCoerceAndExpandTypes();
762*67e74705SXin Li return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
763*67e74705SXin Li }
764*67e74705SXin Li }
765*67e74705SXin Li
classifyType(CodeGenModule & CGM,CanQualType type,bool forReturn)766*67e74705SXin Li static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
767*67e74705SXin Li bool forReturn) {
768*67e74705SXin Li if (auto recordType = dyn_cast<RecordType>(type)) {
769*67e74705SXin Li auto record = recordType->getDecl();
770*67e74705SXin Li auto &layout = CGM.getContext().getASTRecordLayout(record);
771*67e74705SXin Li
772*67e74705SXin Li if (auto cxxRecord = dyn_cast<CXXRecordDecl>(record)) {
773*67e74705SXin Li if (shouldPassCXXRecordIndirectly(CGM, cxxRecord))
774*67e74705SXin Li return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
775*67e74705SXin Li }
776*67e74705SXin Li
777*67e74705SXin Li SwiftAggLowering lowering(CGM);
778*67e74705SXin Li lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
779*67e74705SXin Li lowering.finish();
780*67e74705SXin Li
781*67e74705SXin Li return classifyExpandedType(lowering, forReturn, layout.getAlignment());
782*67e74705SXin Li }
783*67e74705SXin Li
784*67e74705SXin Li // Just assume that all of our target ABIs can support returning at least
785*67e74705SXin Li // two integer or floating-point values.
786*67e74705SXin Li if (isa<ComplexType>(type)) {
787*67e74705SXin Li return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
788*67e74705SXin Li }
789*67e74705SXin Li
790*67e74705SXin Li // Vector types may need to be legalized.
791*67e74705SXin Li if (isa<VectorType>(type)) {
792*67e74705SXin Li SwiftAggLowering lowering(CGM);
793*67e74705SXin Li lowering.addTypedData(type, CharUnits::Zero());
794*67e74705SXin Li lowering.finish();
795*67e74705SXin Li
796*67e74705SXin Li CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
797*67e74705SXin Li return classifyExpandedType(lowering, forReturn, alignment);
798*67e74705SXin Li }
799*67e74705SXin Li
800*67e74705SXin Li // Member pointer types need to be expanded, but it's a simple form of
801*67e74705SXin Li // expansion that 'Direct' can handle. Note that CanBeFlattened should be
802*67e74705SXin Li // true for this to work.
803*67e74705SXin Li
804*67e74705SXin Li // 'void' needs to be ignored.
805*67e74705SXin Li if (type->isVoidType()) {
806*67e74705SXin Li return ABIArgInfo::getIgnore();
807*67e74705SXin Li }
808*67e74705SXin Li
809*67e74705SXin Li // Everything else can be passed directly.
810*67e74705SXin Li return ABIArgInfo::getDirect();
811*67e74705SXin Li }
812*67e74705SXin Li
classifyReturnType(CodeGenModule & CGM,CanQualType type)813*67e74705SXin Li ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
814*67e74705SXin Li return classifyType(CGM, type, /*forReturn*/ true);
815*67e74705SXin Li }
816*67e74705SXin Li
classifyArgumentType(CodeGenModule & CGM,CanQualType type)817*67e74705SXin Li ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
818*67e74705SXin Li CanQualType type) {
819*67e74705SXin Li return classifyType(CGM, type, /*forReturn*/ false);
820*67e74705SXin Li }
821*67e74705SXin Li
computeABIInfo(CodeGenModule & CGM,CGFunctionInfo & FI)822*67e74705SXin Li void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
823*67e74705SXin Li auto &retInfo = FI.getReturnInfo();
824*67e74705SXin Li retInfo = classifyReturnType(CGM, FI.getReturnType());
825*67e74705SXin Li
826*67e74705SXin Li for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
827*67e74705SXin Li auto &argInfo = FI.arg_begin()[i];
828*67e74705SXin Li argInfo.info = classifyArgumentType(CGM, argInfo.type);
829*67e74705SXin Li }
830*67e74705SXin Li }
831