1 //
2 // Copyright © 2017 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 #include "../InferenceTest.hpp"
6 #include "../ImagePreprocessor.hpp"
7 #include "armnnTfLiteParser/ITfLiteParser.hpp"
8 
9 using namespace armnnTfLiteParser;
10 
main(int argc,char * argv[])11 int main(int argc, char* argv[])
12 {
13     int retVal = EXIT_FAILURE;
14     try
15     {
16         // Coverity fix: The following code may throw an exception of type std::length_error.
17         // The model we are using incorrectly classifies the images
18         // But can still be used for benchmarking the layers.
19         std::vector<ImageSet> imageSet =
20                 {
21                         {"Dog.jpg", 789},
22                         {"Cat.jpg", 592},
23                         {"shark.jpg", 755},
24                 };
25 
26         armnn::TensorShape inputTensorShape({ 1, 128, 128, 3 });
27 
28         using DataType = uint8_t;
29         using DatabaseType = ImagePreprocessor<DataType>;
30         using ParserType = armnnTfLiteParser::ITfLiteParser;
31         using ModelType = InferenceModel<ParserType, DataType>;
32 
33         // Coverity fix: ClassifierInferenceTestMain() may throw uncaught exceptions.
34         retVal = armnn::test::ClassifierInferenceTestMain<DatabaseType,
35                 ParserType>(
36                 argc, argv,
37                 "mobilenet_v1_0.25_128_quant.tflite", // model name
38                 true,                      // model is binary
39                 "input",      // input tensor name
40                 "MobilenetV1/Predictions/Reshape_1",        // output tensor name
41                 { 0, 1, 2 },               // test images to test with as above
42                 [&imageSet](const char* dataDir, const ModelType &) {
43                     // we need to get the input quantization parameters from
44                     // the parsed model
45                     return DatabaseType(
46                             dataDir,
47                             128,
48                             128,
49                             imageSet,
50                             1,
51                             {{0, 0, 0}},
52                             {{1, 1, 1}},
53                             DatabaseType::DataFormat::NCHW,
54                             1);
55                 },
56                 &inputTensorShape);
57     }
58     catch (const std::exception& e)
59     {
60         // Coverity fix: BOOST_LOG_TRIVIAL (typically used to report errors) may throw an
61         // exception of type std::length_error.
62         // Using stderr instead in this context as there is no point in nesting try-catch blocks here.
63         std::cerr << "WARNING: " << *argv << ": An error has occurred when running "
64                                              "the classifier inference tests: " << e.what() << std::endl;
65     }
66     return retVal;
67 }
68