xref: /aosp_15_r20/external/armnn/src/backends/backendsCommon/test/QuantizedLstmEndToEndTestImpl.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2019 Arm Ltd. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "QuantizedLstmEndToEndTestImpl.hpp"
7 
8 #include <CommonTestUtils.hpp>
9 #include "EndToEndTestImpl.hpp"
10 
11 #include <ResolveType.hpp>
12 
13 #include <armnn/INetwork.hpp>
14 #include <armnn/QuantizedLstmParams.hpp>
15 
16 #include <armnn/utility/NumericCast.hpp>
17 
18 #include <armnnTestUtils/TensorHelpers.hpp>
19 
20 #include <doctest/doctest.h>
21 
22 #include <type_traits>
23 
24 namespace
25 {
26 
CreateQuantizedLstmNetwork(armnn::TensorShape & inputShape,armnn::TensorShape & outputExpectedShape)27 armnn::INetworkPtr CreateQuantizedLstmNetwork(armnn::TensorShape& inputShape,
28                                               armnn::TensorShape& outputExpectedShape)
29 {
30     auto batchSize = armnn::numeric_cast<unsigned int>(inputShape[0]);
31     auto inputSize = armnn::numeric_cast<unsigned int>(inputShape[1]);
32     auto outputSize = armnn::numeric_cast<unsigned int>(outputExpectedShape[1]);
33 
34     float inputOutputScale = 0.0078125f;
35     int32_t inputOutputOffset = 128;
36 
37     float weightsScale = 0.00408021f;
38     int32_t weightsOffset = 100;
39 
40     float biasScale = 3.1876640625e-05f;
41     int32_t biasOffset = 0;
42 
43     float cellStateScale = 0.00048828125f;
44     int32_t cellStateOffset = 0;
45 
46     armnn::TensorInfo inputWeightsInfo({outputSize, inputSize},
47                                        armnn::DataType::QAsymmU8,
48                                        weightsScale,
49                                        weightsOffset,
50                                        true);
51 
52     armnn::TensorInfo recurrentWeightsInfo({outputSize, outputSize},
53                                            armnn::DataType::QAsymmU8,
54                                            weightsScale,
55                                            weightsOffset,
56                                            true);
57 
58     armnn::TensorInfo biasInfo({outputSize}, armnn::DataType::Signed32, biasScale, biasOffset, true);
59 
60     armnn::QuantizedLstmInputParams data;
61 
62     const std::vector<uint8_t> inputToInputWeightsVector = {146, 250, 235, 171, 10, 218, 171, 108};
63     armnn::ConstTensor inputToInputWeightsTensor(inputWeightsInfo, inputToInputWeightsVector.data());
64 
65     const std::vector<uint8_t> inputToForgetWeightsVector = {24, 50, 132, 179, 158, 110, 3, 169};
66     armnn::ConstTensor inputToForgetWeightsTensor(inputWeightsInfo, inputToForgetWeightsVector.data());
67 
68     const std::vector<uint8_t> inputToCellWeightsTensorVector = {133, 34, 29, 49, 206, 109, 54, 183};
69     armnn::ConstTensor inputToCellWeightsTensor(inputWeightsInfo, inputToCellWeightsTensorVector.data());
70 
71     const std::vector<uint8_t> inputToOutputWeightsTensorVector = {195, 187, 11, 99, 109, 10, 218, 48};
72     armnn::ConstTensor inputToOutputWeightsTensor(inputWeightsInfo, inputToOutputWeightsTensorVector.data());
73 
74     const std::vector<uint8_t> recurrentToInputWeightsTensorVector =
75             {254, 206, 77, 168, 71, 20, 215, 6, 223, 7, 118, 225, 59, 130, 174, 26};
76     armnn::ConstTensor recurrentToInputWeightsTensor(recurrentWeightsInfo, recurrentToInputWeightsTensorVector.data());
77 
78     const std::vector<uint8_t> recurrentToForgetWeightsTensorVector =
79             {137, 240, 103, 52, 68, 51, 237, 112, 0, 220, 89, 23, 69, 4, 207, 253};
80     armnn::ConstTensor recurrentToForgetWeightsTensor(recurrentWeightsInfo,
81                                                       recurrentToForgetWeightsTensorVector.data());
82 
83     const std::vector<uint8_t> recurrentToCellWeightsTensorVector =
84             {172, 60, 205, 65, 14, 0, 140, 168, 240, 223, 133, 56, 142, 64, 246, 216};
85     armnn::ConstTensor recurrentToCellWeightsTensor(recurrentWeightsInfo, recurrentToCellWeightsTensorVector.data());
86 
87     const std::vector<uint8_t> recurrentToOutputWeightsTensorVector =
88             {106, 214, 67, 23, 59, 158, 45, 3, 119, 132, 49, 205, 129, 218, 11, 98};
89     armnn::ConstTensor recurrentToOutputWeightsTensor(recurrentWeightsInfo,
90                                                       recurrentToOutputWeightsTensorVector.data());
91 
92     const std::vector<int32_t> inputGateBiasTensorVector = {-7876, 13488, -726, 32839};
93     armnn::ConstTensor inputGateBiasTensor(biasInfo, inputGateBiasTensorVector.data());
94 
95     const std::vector<int32_t> forgetGateBiasTensorVector = {9206, -46884, -11693, -38724};
96     armnn::ConstTensor forgetGateBiasTensor(biasInfo, forgetGateBiasTensorVector.data());
97 
98     const std::vector<int32_t> cellBiasTensorVector = {39481, 48624, 48976, -21419};
99     armnn::ConstTensor cellBiasTensor(biasInfo, cellBiasTensorVector.data());
100 
101     const std::vector<int32_t> outputGateBiasTensorVector = {-58999, -17050, -41852, -40538};
102     armnn::ConstTensor outputGateBiasTensor(biasInfo, outputGateBiasTensorVector.data());
103 
104     data.m_InputToInputWeights = &inputToInputWeightsTensor;
105     data.m_InputToForgetWeights = &inputToForgetWeightsTensor;
106     data.m_InputToCellWeights = &inputToCellWeightsTensor;
107     data.m_InputToOutputWeights = &inputToOutputWeightsTensor;
108     data.m_RecurrentToInputWeights = &recurrentToInputWeightsTensor;
109     data.m_RecurrentToForgetWeights = &recurrentToForgetWeightsTensor;
110     data.m_RecurrentToCellWeights = &recurrentToCellWeightsTensor;
111     data.m_RecurrentToOutputWeights = &recurrentToOutputWeightsTensor;
112     data.m_InputGateBias = &inputGateBiasTensor;
113     data.m_ForgetGateBias = &forgetGateBiasTensor;
114     data.m_CellBias = &cellBiasTensor;
115     data.m_OutputGateBias = &outputGateBiasTensor;
116 
117     armnn::INetworkPtr net(armnn::INetwork::Create());
118 
119     armnn::IConnectableLayer* const inputLayer   = net->AddInputLayer(0);
120     armnn::IConnectableLayer* const cellStateIn = net->AddInputLayer(1);
121     armnn::IConnectableLayer* const outputStateIn = net->AddInputLayer(2);
122     armnn::IConnectableLayer* const quantizedLstmLayer = net->AddQuantizedLstmLayer(data, "quantizedLstm");
123     armnn::IConnectableLayer* const cellStateOut  = net->AddOutputLayer(0);
124     armnn::IConnectableLayer* const outputStateOut  = net->AddOutputLayer(1);
125 
126     armnn::TensorInfo inputTensorInfo({batchSize , inputSize},
127                                       armnn::DataType::QAsymmU8,
128                                       inputOutputScale,
129                                       inputOutputOffset);
130 
131     armnn::TensorInfo cellStateInTensorInfo({batchSize , outputSize},
132                                             armnn::DataType::QSymmS16,
133                                             cellStateScale,
134                                             cellStateOffset);
135 
136     armnn::TensorInfo outputStateInTensorInfo({batchSize , outputSize},
137                                               armnn::DataType::QAsymmU8,
138                                               inputOutputScale,
139                                               inputOutputOffset);
140 
141     armnn::TensorInfo cellStateOutTensorInfo({batchSize, outputSize},
142                                              armnn::DataType::QSymmS16,
143                                              cellStateScale,
144                                              cellStateOffset);
145 
146     armnn::TensorInfo outputTensorInfo({batchSize, outputSize},
147                                        armnn::DataType::QAsymmU8,
148                                        inputOutputScale,
149                                        inputOutputOffset);
150 
151     // connect up
152     // inputs
153     Connect(inputLayer, quantizedLstmLayer, inputTensorInfo, 0, 0);
154     Connect(cellStateIn, quantizedLstmLayer, cellStateInTensorInfo, 0, 1);
155     Connect(outputStateIn, quantizedLstmLayer, outputStateInTensorInfo, 0, 2);
156 
157     // outputs
158     Connect(quantizedLstmLayer, cellStateOut, cellStateOutTensorInfo, 0, 0);
159     Connect(quantizedLstmLayer, outputStateOut, outputTensorInfo, 1, 0);
160 
161     return net;
162 }
163 
164 // Checks if two values of an arithmetic type are close enough to each other
165 // with regard to a given tolerance value.
166 template<typename T>
167 typename std::enable_if<std::is_arithmetic<T>::value, bool>::type
IsCloseEnough(T value1,T value2,T tolerance)168 IsCloseEnough(T value1, T value2, T tolerance)
169 {
170     if (tolerance < 0)
171     {
172         throw armnn::InvalidArgumentException("Tolerance cannot be < 0");
173     }
174 
175     T diff = value1 >= value2 ? static_cast<T>(value1 - value2) : static_cast<T>(value2 - value1);
176     return diff <= tolerance;
177 }
178 
179 } // anonymous namespace
180 
QuantizedLstmEndToEnd(const std::vector<armnn::BackendId> & backends)181 void QuantizedLstmEndToEnd(const std::vector<armnn::BackendId>& backends)
182 {
183     std::vector<uint8_t> inputVector = {166, 179, 50, 150};
184     armnn::TensorInfo inputDesc({2, 2}, armnn::DataType::QAsymmU8);
185 
186     std::vector<int16_t> cellStateInVector = {876, 1034, 955, -909, 761, 1029, 796, -1036};
187     armnn::TensorInfo cellStateInDesc({2, 4}, armnn::DataType::QSymmS16);
188 
189     std::vector<uint8_t> outputStateInVector = {136, 150, 140, 115, 135, 152, 138, 112};
190     armnn::TensorInfo outputStateInDesc({2, 4}, armnn::DataType::QAsymmU8);
191 
192     std::vector<int16_t> cellStateOutVector = {1485, 1177, 1373, -1023, 1019, 1355, 1097, -1235};
193     armnn::TensorInfo cellStateOutVectorDesc({2, 4}, armnn::DataType::QSymmS16);
194 
195     std::vector<uint8_t> outputStateOutVector = {140, 151, 146, 112, 136, 156, 142, 112};
196     armnn::TensorInfo outputDesc({2, 4}, armnn::DataType::QAsymmU8);
197 
198     // Builds up the structure of the network
199     armnn::INetworkPtr net = CreateQuantizedLstmNetwork(inputDesc.GetShape(), outputDesc.GetShape());
200 
201     IRuntime::CreationOptions options;
202     IRuntimePtr runtime(IRuntime::Create(options));
203 
204     // optimize the network
205     IOptimizedNetworkPtr optNet = Optimize(*net, backends, runtime->GetDeviceSpec());
206 
207     // Loads it into the runtime.
208     NetworkId netId;
209     runtime->LoadNetwork(netId, std::move(optNet));
210 
211     InputTensors inputTensors;
212     inputTensors.reserve(3);
213 
214     // input
215     TensorInfo inputTensorInfo0 = runtime->GetInputTensorInfo(netId, 0);
216     TensorInfo inputTensorInfo1 = runtime->GetInputTensorInfo(netId, 1);
217     TensorInfo inputTensorInfo2 = runtime->GetInputTensorInfo(netId, 2);
218     inputTensorInfo0.SetConstant(true);
219     inputTensorInfo1.SetConstant(true);
220     inputTensorInfo2.SetConstant(true);
221 
222     inputTensors.push_back({0, ConstTensor(inputTensorInfo0, inputVector.data())});
223     inputTensors.push_back({1, ConstTensor(inputTensorInfo1, cellStateInVector.data())});
224     inputTensors.push_back({2, ConstTensor(inputTensorInfo2, outputStateInVector.data())});
225 
226     OutputTensors outputTensors;
227     outputTensors.reserve(2);
228 
229     //output
230     std::vector<int16_t> cellStateOutResult(cellStateOutVector.size());
231     std::vector<uint8_t> outputStateOutResult(outputStateOutVector.size());
232     outputTensors.push_back({0, Tensor(runtime->GetOutputTensorInfo(netId, 0), cellStateOutResult.data())});
233     outputTensors.push_back({1, Tensor(runtime->GetOutputTensorInfo(netId, 1), outputStateOutResult.data())});
234 
235     // Does the inference.
236     runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
237 
238     // Checks the results
239     constexpr int16_t toleranceInt16 = 2;
240     for (unsigned int i = 0u; i < cellStateOutResult.size(); ++i)
241     {
242         CHECK(IsCloseEnough(cellStateOutVector[i], cellStateOutResult[i], toleranceInt16));
243     }
244 
245     constexpr uint8_t toleranceUint8 = 1;
246     for (unsigned int i = 0u; i < outputStateOutResult.size(); ++i)
247     {
248         CHECK(IsCloseEnough(outputStateOutVector[i], outputStateOutResult[i], toleranceUint8));
249     }
250 }
251