1# Copyright © 2020 Arm Ltd and Contributors. All rights reserved. 2# SPDX-License-Identifier: MIT 3import os 4 5import pytest 6import pyarmnn as ann 7import numpy as np 8 9 10@pytest.fixture() 11def parser(shared_data_folder): 12 """ 13 Parse and setup the test network to be used for the tests below 14 """ 15 parser = ann.IDeserializer() 16 parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, 'mock_model.armnn')) 17 18 yield parser 19 20 21def test_deserializer_swig_destroy(): 22 assert ann.IDeserializer.__swig_destroy__, "There is a swig python destructor defined" 23 assert ann.IDeserializer.__swig_destroy__.__name__ == "delete_IDeserializer" 24 25 26def test_check_deserializer_swig_ownership(parser): 27 # Check to see that SWIG has ownership for parser. This instructs SWIG to take 28 # ownership of the return value. This allows the value to be automatically 29 # garbage-collected when it is no longer in use 30 assert parser.thisown 31 32 33def test_deserializer_get_network_input_binding_info(parser): 34 # use 0 as a dummy value for layer_id, which is unused in the actual implementation 35 layer_id = 0 36 input_name = 'input_1' 37 38 input_binding_info = parser.GetNetworkInputBindingInfo(layer_id, input_name) 39 40 tensor = input_binding_info[1] 41 assert tensor.GetDataType() == 2 42 assert tensor.GetNumDimensions() == 4 43 assert tensor.GetNumElements() == 784 44 assert tensor.GetQuantizationOffset() == 128 45 assert tensor.GetQuantizationScale() == 0.007843137718737125 46 47 48def test_deserializer_get_network_output_binding_info(parser): 49 # use 0 as a dummy value for layer_id, which is unused in the actual implementation 50 layer_id = 0 51 output_name = "dense/Softmax" 52 53 output_binding_info1 = parser.GetNetworkOutputBindingInfo(layer_id, output_name) 54 55 # Check the tensor info retrieved from GetNetworkOutputBindingInfo 56 tensor1 = output_binding_info1[1] 57 58 assert tensor1.GetDataType() == 2 59 assert tensor1.GetNumDimensions() == 2 60 assert tensor1.GetNumElements() == 10 61 assert tensor1.GetQuantizationOffset() == 0 62 assert tensor1.GetQuantizationScale() == 0.00390625 63 64 65def test_deserializer_filenotfound_exception(shared_data_folder): 66 parser = ann.IDeserializer() 67 68 with pytest.raises(RuntimeError) as err: 69 parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, 'some_unknown_network.armnn')) 70 71 # Only check for part of the exception since the exception returns 72 # absolute path which will change on different machines. 73 assert 'Cannot read the file' in str(err.value) 74 75 76def test_deserializer_end_to_end(shared_data_folder): 77 parser = ann.IDeserializer() 78 79 network = parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, "mock_model.armnn")) 80 81 # use 0 as a dummy value for layer_id, which is unused in the actual implementation 82 layer_id = 0 83 input_name = 'input_1' 84 output_name = 'dense/Softmax' 85 86 input_binding_info = parser.GetNetworkInputBindingInfo(layer_id, input_name) 87 88 preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')] 89 90 options = ann.CreationOptions() 91 runtime = ann.IRuntime(options) 92 93 opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions()) 94 assert 0 == len(messages) 95 96 net_id, messages = runtime.LoadNetwork(opt_network) 97 assert "" == messages 98 99 # Load test image data stored in input_lite.npy 100 input_tensor_data = np.load(os.path.join(shared_data_folder, 'deserializer/input_lite.npy')) 101 input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data]) 102 103 output_tensors = [] 104 out_bind_info = parser.GetNetworkOutputBindingInfo(layer_id, output_name) 105 out_tensor_info = out_bind_info[1] 106 out_tensor_id = out_bind_info[0] 107 output_tensors.append((out_tensor_id, 108 ann.Tensor(out_tensor_info))) 109 110 runtime.EnqueueWorkload(net_id, input_tensors, output_tensors) 111 112 output_vectors = [] 113 for index, out_tensor in enumerate(output_tensors): 114 output_vectors.append(out_tensor[1].get_memory_area()) 115 116 # Load golden output file for result comparison. 117 expected_outputs = np.load(os.path.join(shared_data_folder, 'deserializer/golden_output_lite.npy')) 118 119 # Check that output matches golden output 120 assert (expected_outputs == output_vectors[0]).all() 121