xref: /aosp_15_r20/external/armnn/delegate/test/ElementwiseBinaryTestHelper.hpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2020, 2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #pragma once
7 
8 #include "TestUtils.hpp"
9 
10 #include <armnn_delegate.hpp>
11 #include <DelegateTestInterpreter.hpp>
12 
13 #include <flatbuffers/flatbuffers.h>
14 #include <tensorflow/lite/kernels/register.h>
15 #include <tensorflow/lite/version.h>
16 
17 #include <schema_generated.h>
18 
19 #include <doctest/doctest.h>
20 
21 namespace
22 {
23 
24 template <typename T>
CreateElementwiseBinaryTfLiteModel(tflite::BuiltinOperator binaryOperatorCode,tflite::ActivationFunctionType activationType,tflite::TensorType tensorType,const std::vector<int32_t> & input0TensorShape,const std::vector<int32_t> & input1TensorShape,const std::vector<int32_t> & outputTensorShape,std::vector<T> & input1Values,bool constantInput=false,float quantScale=1.0f,int quantOffset=0)25 std::vector<char> CreateElementwiseBinaryTfLiteModel(tflite::BuiltinOperator binaryOperatorCode,
26                                                      tflite::ActivationFunctionType activationType,
27                                                      tflite::TensorType tensorType,
28                                                      const std::vector <int32_t>& input0TensorShape,
29                                                      const std::vector <int32_t>& input1TensorShape,
30                                                      const std::vector <int32_t>& outputTensorShape,
31                                                      std::vector<T>& input1Values,
32                                                      bool constantInput = false,
33                                                      float quantScale = 1.0f,
34                                                      int quantOffset  = 0)
35 {
36     using namespace tflite;
37     flatbuffers::FlatBufferBuilder flatBufferBuilder;
38 
39     std::vector<flatbuffers::Offset<tflite::Buffer>> buffers;
40     buffers.push_back(CreateBuffer(flatBufferBuilder));
41     buffers.push_back(CreateBuffer(flatBufferBuilder));
42     if (constantInput)
43     {
44         buffers.push_back(
45             CreateBuffer(flatBufferBuilder,
46                          flatBufferBuilder.CreateVector(reinterpret_cast<const uint8_t*>(input1Values.data()),
47                                                         sizeof(T) * input1Values.size())));
48     }
49     else
50     {
51         buffers.push_back(CreateBuffer(flatBufferBuilder));
52     }
53     buffers.push_back(CreateBuffer(flatBufferBuilder));
54 
55     auto quantizationParameters =
56         CreateQuantizationParameters(flatBufferBuilder,
57                                      0,
58                                      0,
59                                      flatBufferBuilder.CreateVector<float>({ quantScale }),
60                                      flatBufferBuilder.CreateVector<int64_t>({ quantOffset }));
61 
62 
63     std::array<flatbuffers::Offset<Tensor>, 3> tensors;
64     tensors[0] = CreateTensor(flatBufferBuilder,
65                               flatBufferBuilder.CreateVector<int32_t>(input0TensorShape.data(),
66                                                                       input0TensorShape.size()),
67                               tensorType,
68                               1,
69                               flatBufferBuilder.CreateString("input_0"),
70                               quantizationParameters);
71     tensors[1] = CreateTensor(flatBufferBuilder,
72                               flatBufferBuilder.CreateVector<int32_t>(input1TensorShape.data(),
73                                                                       input1TensorShape.size()),
74                               tensorType,
75                               2,
76                               flatBufferBuilder.CreateString("input_1"),
77                               quantizationParameters);
78     tensors[2] = CreateTensor(flatBufferBuilder,
79                               flatBufferBuilder.CreateVector<int32_t>(outputTensorShape.data(),
80                                                                       outputTensorShape.size()),
81                               tensorType,
82                               3,
83                               flatBufferBuilder.CreateString("output"),
84                               quantizationParameters);
85 
86     // create operator
87     tflite::BuiltinOptions operatorBuiltinOptionsType = tflite::BuiltinOptions_NONE;
88     flatbuffers::Offset<void> operatorBuiltinOptions = 0;
89     switch (binaryOperatorCode)
90     {
91         case BuiltinOperator_ADD:
92         {
93             operatorBuiltinOptionsType = BuiltinOptions_AddOptions;
94             operatorBuiltinOptions = CreateAddOptions(flatBufferBuilder, activationType).Union();
95             break;
96         }
97         case BuiltinOperator_DIV:
98         {
99             operatorBuiltinOptionsType = BuiltinOptions_DivOptions;
100             operatorBuiltinOptions = CreateDivOptions(flatBufferBuilder, activationType).Union();
101             break;
102         }
103         case BuiltinOperator_MAXIMUM:
104         {
105             operatorBuiltinOptionsType = BuiltinOptions_MaximumMinimumOptions;
106             operatorBuiltinOptions = CreateMaximumMinimumOptions(flatBufferBuilder).Union();
107             break;
108         }
109         case BuiltinOperator_MINIMUM:
110         {
111             operatorBuiltinOptionsType = BuiltinOptions_MaximumMinimumOptions;
112             operatorBuiltinOptions = CreateMaximumMinimumOptions(flatBufferBuilder).Union();
113             break;
114         }
115         case BuiltinOperator_MUL:
116         {
117             operatorBuiltinOptionsType = BuiltinOptions_MulOptions;
118             operatorBuiltinOptions = CreateMulOptions(flatBufferBuilder, activationType).Union();
119             break;
120         }
121         case BuiltinOperator_SUB:
122         {
123             operatorBuiltinOptionsType = BuiltinOptions_SubOptions;
124             operatorBuiltinOptions = CreateSubOptions(flatBufferBuilder, activationType).Union();
125             break;
126         }
127         case BuiltinOperator_FLOOR_DIV:
128         {
129             operatorBuiltinOptionsType = tflite::BuiltinOptions_FloorDivOptions;
130             operatorBuiltinOptions = CreateSubOptions(flatBufferBuilder, activationType).Union();
131             break;
132         }
133         default:
134             break;
135     }
136     const std::vector<int32_t> operatorInputs{0, 1};
137     const std::vector<int32_t> operatorOutputs{2};
138     flatbuffers::Offset <Operator> elementwiseBinaryOperator =
139         CreateOperator(flatBufferBuilder,
140                        0,
141                        flatBufferBuilder.CreateVector<int32_t>(operatorInputs.data(), operatorInputs.size()),
142                        flatBufferBuilder.CreateVector<int32_t>(operatorOutputs.data(), operatorOutputs.size()),
143                        operatorBuiltinOptionsType,
144                        operatorBuiltinOptions);
145 
146     const std::vector<int> subgraphInputs{0, 1};
147     const std::vector<int> subgraphOutputs{2};
148     flatbuffers::Offset <SubGraph> subgraph =
149         CreateSubGraph(flatBufferBuilder,
150                        flatBufferBuilder.CreateVector(tensors.data(), tensors.size()),
151                        flatBufferBuilder.CreateVector<int32_t>(subgraphInputs.data(), subgraphInputs.size()),
152                        flatBufferBuilder.CreateVector<int32_t>(subgraphOutputs.data(), subgraphOutputs.size()),
153                        flatBufferBuilder.CreateVector(&elementwiseBinaryOperator, 1));
154 
155     flatbuffers::Offset <flatbuffers::String> modelDescription =
156         flatBufferBuilder.CreateString("ArmnnDelegate: Elementwise Binary Operator Model");
157     flatbuffers::Offset <OperatorCode> operatorCode = CreateOperatorCode(flatBufferBuilder, binaryOperatorCode);
158 
159     flatbuffers::Offset <Model> flatbufferModel =
160         CreateModel(flatBufferBuilder,
161                     TFLITE_SCHEMA_VERSION,
162                     flatBufferBuilder.CreateVector(&operatorCode, 1),
163                     flatBufferBuilder.CreateVector(&subgraph, 1),
164                     modelDescription,
165                     flatBufferBuilder.CreateVector(buffers.data(), buffers.size()));
166 
167     flatBufferBuilder.Finish(flatbufferModel, armnnDelegate::FILE_IDENTIFIER);
168 
169     return std::vector<char>(flatBufferBuilder.GetBufferPointer(),
170                              flatBufferBuilder.GetBufferPointer() + flatBufferBuilder.GetSize());
171 }
172 
173 template <typename T>
ElementwiseBinaryTest(tflite::BuiltinOperator binaryOperatorCode,tflite::ActivationFunctionType activationType,tflite::TensorType tensorType,std::vector<armnn::BackendId> & backends,std::vector<int32_t> & input0Shape,std::vector<int32_t> & input1Shape,std::vector<int32_t> & outputShape,std::vector<T> & input0Values,std::vector<T> & input1Values,std::vector<T> & expectedOutputValues,float quantScale=1.0f,int quantOffset=0,bool constantInput=false)174 void ElementwiseBinaryTest(tflite::BuiltinOperator binaryOperatorCode,
175                            tflite::ActivationFunctionType activationType,
176                            tflite::TensorType tensorType,
177                            std::vector<armnn::BackendId>& backends,
178                            std::vector<int32_t>& input0Shape,
179                            std::vector<int32_t>& input1Shape,
180                            std::vector<int32_t>& outputShape,
181                            std::vector<T>& input0Values,
182                            std::vector<T>& input1Values,
183                            std::vector<T>& expectedOutputValues,
184                            float quantScale = 1.0f,
185                            int quantOffset  = 0,
186                            bool constantInput = false)
187 {
188     using namespace delegateTestInterpreter;
189     std::vector<char> modelBuffer = CreateElementwiseBinaryTfLiteModel<T>(binaryOperatorCode,
190                                                                           activationType,
191                                                                           tensorType,
192                                                                           input0Shape,
193                                                                           input1Shape,
194                                                                           outputShape,
195                                                                           input1Values,
196                                                                           constantInput,
197                                                                           quantScale,
198                                                                           quantOffset);
199 
200     // Setup interpreter with just TFLite Runtime.
201     auto tfLiteInterpreter = DelegateTestInterpreter(modelBuffer);
202     CHECK(tfLiteInterpreter.AllocateTensors() == kTfLiteOk);
203     CHECK(tfLiteInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
204     CHECK(tfLiteInterpreter.FillInputTensor<T>(input1Values, 1) == kTfLiteOk);
205     CHECK(tfLiteInterpreter.Invoke() == kTfLiteOk);
206     std::vector<T>       tfLiteOutputValues = tfLiteInterpreter.GetOutputResult<T>(0);
207     std::vector<int32_t> tfLiteOutputShape  = tfLiteInterpreter.GetOutputShape(0);
208 
209     // Setup interpreter with Arm NN Delegate applied.
210     auto armnnInterpreter = DelegateTestInterpreter(modelBuffer, backends);
211     CHECK(armnnInterpreter.AllocateTensors() == kTfLiteOk);
212     CHECK(armnnInterpreter.FillInputTensor<T>(input0Values, 0) == kTfLiteOk);
213     CHECK(armnnInterpreter.FillInputTensor<T>(input1Values, 1) == kTfLiteOk);
214     CHECK(armnnInterpreter.Invoke() == kTfLiteOk);
215     std::vector<T>       armnnOutputValues = armnnInterpreter.GetOutputResult<T>(0);
216     std::vector<int32_t> armnnOutputShape  = armnnInterpreter.GetOutputShape(0);
217 
218     armnnDelegate::CompareOutputData<T>(tfLiteOutputValues, armnnOutputValues, expectedOutputValues);
219     armnnDelegate::CompareOutputShape(tfLiteOutputShape, armnnOutputShape, outputShape);
220 
221     tfLiteInterpreter.Cleanup();
222     armnnInterpreter.Cleanup();
223 }
224 
225 } // anonymous namespace