1*412f47f9SXin Li /*
2*412f47f9SXin Li * Double-precision vector asin(x) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2023-2024, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include "v_math.h"
9*412f47f9SXin Li #include "poly_advsimd_f64.h"
10*412f47f9SXin Li #include "pl_sig.h"
11*412f47f9SXin Li #include "pl_test.h"
12*412f47f9SXin Li
13*412f47f9SXin Li static const struct data
14*412f47f9SXin Li {
15*412f47f9SXin Li float64x2_t poly[12];
16*412f47f9SXin Li float64x2_t pi_over_2;
17*412f47f9SXin Li uint64x2_t abs_mask;
18*412f47f9SXin Li } data = {
19*412f47f9SXin Li /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
20*412f47f9SXin Li on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
21*412f47f9SXin Li .poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4),
22*412f47f9SXin Li V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6),
23*412f47f9SXin Li V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6),
24*412f47f9SXin Li V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7),
25*412f47f9SXin Li V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6),
26*412f47f9SXin Li V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), },
27*412f47f9SXin Li .pi_over_2 = V2 (0x1.921fb54442d18p+0),
28*412f47f9SXin Li .abs_mask = V2 (0x7fffffffffffffff),
29*412f47f9SXin Li };
30*412f47f9SXin Li
31*412f47f9SXin Li #define AllMask v_u64 (0xffffffffffffffff)
32*412f47f9SXin Li #define One 0x3ff0000000000000
33*412f47f9SXin Li #define Small 0x3e50000000000000 /* 2^-12. */
34*412f47f9SXin Li
35*412f47f9SXin Li #if WANT_SIMD_EXCEPT
36*412f47f9SXin Li static float64x2_t VPCS_ATTR NOINLINE
special_case(float64x2_t x,float64x2_t y,uint64x2_t special)37*412f47f9SXin Li special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
38*412f47f9SXin Li {
39*412f47f9SXin Li return v_call_f64 (asin, x, y, special);
40*412f47f9SXin Li }
41*412f47f9SXin Li #endif
42*412f47f9SXin Li
43*412f47f9SXin Li /* Double-precision implementation of vector asin(x).
44*412f47f9SXin Li
45*412f47f9SXin Li For |x| < Small, approximate asin(x) by x. Small = 2^-12 for correct
46*412f47f9SXin Li rounding. If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the
47*412f47f9SXin Li following approximation.
48*412f47f9SXin Li
49*412f47f9SXin Li For |x| in [Small, 0.5], use an order 11 polynomial P such that the final
50*412f47f9SXin Li approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
51*412f47f9SXin Li
52*412f47f9SXin Li The largest observed error in this region is 1.01 ulps,
53*412f47f9SXin Li _ZGVnN2v_asin (0x1.da9735b5a9277p-2) got 0x1.ed78525a927efp-2
54*412f47f9SXin Li want 0x1.ed78525a927eep-2.
55*412f47f9SXin Li
56*412f47f9SXin Li For |x| in [0.5, 1.0], use same approximation with a change of variable
57*412f47f9SXin Li
58*412f47f9SXin Li asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
59*412f47f9SXin Li
60*412f47f9SXin Li The largest observed error in this region is 2.69 ulps,
61*412f47f9SXin Li _ZGVnN2v_asin (0x1.044e8cefee301p-1) got 0x1.1111dd54ddf96p-1
62*412f47f9SXin Li want 0x1.1111dd54ddf99p-1. */
V_NAME_D1(asin)63*412f47f9SXin Li float64x2_t VPCS_ATTR V_NAME_D1 (asin) (float64x2_t x)
64*412f47f9SXin Li {
65*412f47f9SXin Li const struct data *d = ptr_barrier (&data);
66*412f47f9SXin Li
67*412f47f9SXin Li float64x2_t ax = vabsq_f64 (x);
68*412f47f9SXin Li
69*412f47f9SXin Li #if WANT_SIMD_EXCEPT
70*412f47f9SXin Li /* Special values need to be computed with scalar fallbacks so
71*412f47f9SXin Li that appropriate exceptions are raised. */
72*412f47f9SXin Li uint64x2_t special
73*412f47f9SXin Li = vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)),
74*412f47f9SXin Li v_u64 (One - Small));
75*412f47f9SXin Li if (unlikely (v_any_u64 (special)))
76*412f47f9SXin Li return special_case (x, x, AllMask);
77*412f47f9SXin Li #endif
78*412f47f9SXin Li
79*412f47f9SXin Li uint64x2_t a_lt_half = vcltq_f64 (ax, v_f64 (0.5));
80*412f47f9SXin Li
81*412f47f9SXin Li /* Evaluate polynomial Q(x) = y + y * z * P(z) with
82*412f47f9SXin Li z = x ^ 2 and y = |x| , if |x| < 0.5
83*412f47f9SXin Li z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
84*412f47f9SXin Li float64x2_t z2 = vbslq_f64 (a_lt_half, vmulq_f64 (x, x),
85*412f47f9SXin Li vfmsq_n_f64 (v_f64 (0.5), ax, 0.5));
86*412f47f9SXin Li float64x2_t z = vbslq_f64 (a_lt_half, ax, vsqrtq_f64 (z2));
87*412f47f9SXin Li
88*412f47f9SXin Li /* Use a single polynomial approximation P for both intervals. */
89*412f47f9SXin Li float64x2_t z4 = vmulq_f64 (z2, z2);
90*412f47f9SXin Li float64x2_t z8 = vmulq_f64 (z4, z4);
91*412f47f9SXin Li float64x2_t z16 = vmulq_f64 (z8, z8);
92*412f47f9SXin Li float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly);
93*412f47f9SXin Li
94*412f47f9SXin Li /* Finalize polynomial: z + z * z2 * P(z2). */
95*412f47f9SXin Li p = vfmaq_f64 (z, vmulq_f64 (z, z2), p);
96*412f47f9SXin Li
97*412f47f9SXin Li /* asin(|x|) = Q(|x|) , for |x| < 0.5
98*412f47f9SXin Li = pi/2 - 2 Q(|x|), for |x| >= 0.5. */
99*412f47f9SXin Li float64x2_t y = vbslq_f64 (a_lt_half, p, vfmsq_n_f64 (d->pi_over_2, p, 2.0));
100*412f47f9SXin Li
101*412f47f9SXin Li /* Copy sign. */
102*412f47f9SXin Li return vbslq_f64 (d->abs_mask, y, x);
103*412f47f9SXin Li }
104*412f47f9SXin Li
105*412f47f9SXin Li PL_SIG (V, D, 1, asin, -1.0, 1.0)
106*412f47f9SXin Li PL_TEST_ULP (V_NAME_D1 (asin), 2.20)
107*412f47f9SXin Li PL_TEST_EXPECT_FENV (V_NAME_D1 (asin), WANT_SIMD_EXCEPT)
108*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), 0, Small, 5000)
109*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), Small, 0.5, 50000)
110*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), 0.5, 1.0, 50000)
111*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), 1.0, 0x1p11, 50000)
112*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), 0x1p11, inf, 20000)
113*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_D1 (asin), -0, -inf, 20000)
114