1*412f47f9SXin Li /*
2*412f47f9SXin Li * Single-precision vector acos(x) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2023, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include "v_math.h"
9*412f47f9SXin Li #include "poly_advsimd_f32.h"
10*412f47f9SXin Li #include "pl_sig.h"
11*412f47f9SXin Li #include "pl_test.h"
12*412f47f9SXin Li
13*412f47f9SXin Li static const struct data
14*412f47f9SXin Li {
15*412f47f9SXin Li float32x4_t poly[5];
16*412f47f9SXin Li float32x4_t pi_over_2f, pif;
17*412f47f9SXin Li } data = {
18*412f47f9SXin Li /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
19*412f47f9SXin Li [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
20*412f47f9SXin Li .poly = { V4 (0x1.55555ep-3), V4 (0x1.33261ap-4), V4 (0x1.70d7dcp-5),
21*412f47f9SXin Li V4 (0x1.b059dp-6), V4 (0x1.3af7d8p-5) },
22*412f47f9SXin Li .pi_over_2f = V4 (0x1.921fb6p+0f),
23*412f47f9SXin Li .pif = V4 (0x1.921fb6p+1f),
24*412f47f9SXin Li };
25*412f47f9SXin Li
26*412f47f9SXin Li #define AbsMask 0x7fffffff
27*412f47f9SXin Li #define Half 0x3f000000
28*412f47f9SXin Li #define One 0x3f800000
29*412f47f9SXin Li #define Small 0x32800000 /* 2^-26. */
30*412f47f9SXin Li
31*412f47f9SXin Li #if WANT_SIMD_EXCEPT
32*412f47f9SXin Li static float32x4_t VPCS_ATTR NOINLINE
special_case(float32x4_t x,float32x4_t y,uint32x4_t special)33*412f47f9SXin Li special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
34*412f47f9SXin Li {
35*412f47f9SXin Li return v_call_f32 (acosf, x, y, special);
36*412f47f9SXin Li }
37*412f47f9SXin Li #endif
38*412f47f9SXin Li
39*412f47f9SXin Li /* Single-precision implementation of vector acos(x).
40*412f47f9SXin Li
41*412f47f9SXin Li For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-26 for correct
42*412f47f9SXin Li rounding.
43*412f47f9SXin Li If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following
44*412f47f9SXin Li approximation.
45*412f47f9SXin Li
46*412f47f9SXin Li For |x| in [Small, 0.5], use order 4 polynomial P such that the final
47*412f47f9SXin Li approximation of asin is an odd polynomial:
48*412f47f9SXin Li
49*412f47f9SXin Li acos(x) ~ pi/2 - (x + x^3 P(x^2)).
50*412f47f9SXin Li
51*412f47f9SXin Li The largest observed error in this region is 1.26 ulps,
52*412f47f9SXin Li _ZGVnN4v_acosf (0x1.843bfcp-2) got 0x1.2e934cp+0 want 0x1.2e934ap+0.
53*412f47f9SXin Li
54*412f47f9SXin Li For |x| in [0.5, 1.0], use same approximation with a change of variable
55*412f47f9SXin Li
56*412f47f9SXin Li acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
57*412f47f9SXin Li
58*412f47f9SXin Li The largest observed error in this region is 1.32 ulps,
59*412f47f9SXin Li _ZGVnN4v_acosf (0x1.15ba56p-1) got 0x1.feb33p-1
60*412f47f9SXin Li want 0x1.feb32ep-1. */
V_NAME_F1(acos)61*412f47f9SXin Li float32x4_t VPCS_ATTR V_NAME_F1 (acos) (float32x4_t x)
62*412f47f9SXin Li {
63*412f47f9SXin Li const struct data *d = ptr_barrier (&data);
64*412f47f9SXin Li
65*412f47f9SXin Li uint32x4_t ix = vreinterpretq_u32_f32 (x);
66*412f47f9SXin Li uint32x4_t ia = vandq_u32 (ix, v_u32 (AbsMask));
67*412f47f9SXin Li
68*412f47f9SXin Li #if WANT_SIMD_EXCEPT
69*412f47f9SXin Li /* A single comparison for One, Small and QNaN. */
70*412f47f9SXin Li uint32x4_t special
71*412f47f9SXin Li = vcgtq_u32 (vsubq_u32 (ia, v_u32 (Small)), v_u32 (One - Small));
72*412f47f9SXin Li if (unlikely (v_any_u32 (special)))
73*412f47f9SXin Li return special_case (x, x, v_u32 (0xffffffff));
74*412f47f9SXin Li #endif
75*412f47f9SXin Li
76*412f47f9SXin Li float32x4_t ax = vreinterpretq_f32_u32 (ia);
77*412f47f9SXin Li uint32x4_t a_le_half = vcleq_u32 (ia, v_u32 (Half));
78*412f47f9SXin Li
79*412f47f9SXin Li /* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
80*412f47f9SXin Li z2 = x ^ 2 and z = |x| , if |x| < 0.5
81*412f47f9SXin Li z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
82*412f47f9SXin Li float32x4_t z2 = vbslq_f32 (a_le_half, vmulq_f32 (x, x),
83*412f47f9SXin Li vfmsq_n_f32 (v_f32 (0.5), ax, 0.5));
84*412f47f9SXin Li float32x4_t z = vbslq_f32 (a_le_half, ax, vsqrtq_f32 (z2));
85*412f47f9SXin Li
86*412f47f9SXin Li /* Use a single polynomial approximation P for both intervals. */
87*412f47f9SXin Li float32x4_t p = v_horner_4_f32 (z2, d->poly);
88*412f47f9SXin Li /* Finalize polynomial: z + z * z2 * P(z2). */
89*412f47f9SXin Li p = vfmaq_f32 (z, vmulq_f32 (z, z2), p);
90*412f47f9SXin Li
91*412f47f9SXin Li /* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
92*412f47f9SXin Li = 2 Q(|x|) , for 0.5 < x < 1.0
93*412f47f9SXin Li = pi - 2 Q(|x|) , for -1.0 < x < -0.5. */
94*412f47f9SXin Li float32x4_t y = vbslq_f32 (v_u32 (AbsMask), p, x);
95*412f47f9SXin Li
96*412f47f9SXin Li uint32x4_t is_neg = vcltzq_f32 (x);
97*412f47f9SXin Li float32x4_t off = vreinterpretq_f32_u32 (
98*412f47f9SXin Li vandq_u32 (vreinterpretq_u32_f32 (d->pif), is_neg));
99*412f47f9SXin Li float32x4_t mul = vbslq_f32 (a_le_half, v_f32 (-1.0), v_f32 (2.0));
100*412f47f9SXin Li float32x4_t add = vbslq_f32 (a_le_half, d->pi_over_2f, off);
101*412f47f9SXin Li
102*412f47f9SXin Li return vfmaq_f32 (add, mul, y);
103*412f47f9SXin Li }
104*412f47f9SXin Li
105*412f47f9SXin Li PL_SIG (V, F, 1, acos, -1.0, 1.0)
106*412f47f9SXin Li PL_TEST_ULP (V_NAME_F1 (acos), 0.82)
107*412f47f9SXin Li PL_TEST_EXPECT_FENV (V_NAME_F1 (acos), WANT_SIMD_EXCEPT)
108*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), 0, 0x1p-26, 5000)
109*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), 0x1p-26, 0.5, 50000)
110*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), 0.5, 1.0, 50000)
111*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), 1.0, 0x1p11, 50000)
112*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), 0x1p11, inf, 20000)
113*412f47f9SXin Li PL_TEST_INTERVAL (V_NAME_F1 (acos), -0, -inf, 20000)
114