1*412f47f9SXin Li// polynomial for approximating double precision tan(x) 2*412f47f9SXin Li// 3*412f47f9SXin Li// Copyright (c) 2023, Arm Limited. 4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 5*412f47f9SXin Li 6*412f47f9SXin Lideg = 8; 7*412f47f9SXin Li 8*412f47f9SXin Li// interval bounds 9*412f47f9SXin Lia = 0x1.0p-126; 10*412f47f9SXin Lib = pi / 8; 11*412f47f9SXin Li 12*412f47f9SXin Lidisplay = hexadecimal; 13*412f47f9SXin Li 14*412f47f9SXin Lif = (tan(sqrt(x))-sqrt(x))/x^(3/2); 15*412f47f9SXin Lipoly = fpminimax(f, deg, [|double ...|], [a*a;b*b]); 16*412f47f9SXin Li 17*412f47f9SXin Li//print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); 18*412f47f9SXin Liprint("in [",a,b,"]"); 19*412f47f9SXin Liprint("coeffs:"); 20*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i); 21