xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/tools/sinpi.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating sinpi(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2023, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 19;  // polynomial degree
7*412f47f9SXin Lia = -1/2; // interval
8*412f47f9SXin Lib = 1/2;
9*412f47f9SXin Li
10*412f47f9SXin Li// find even polynomial with minimal abs error compared to sinpi(x)
11*412f47f9SXin Li
12*412f47f9SXin Li// f = sin(pi* x);
13*412f47f9SXin Lif = pi*x;
14*412f47f9SXin Lic = 1;
15*412f47f9SXin Lifor i from 1 to 80 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*(pi*x)^(2*i+1)/c; };
16*412f47f9SXin Li
17*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
18*412f47f9SXin Liapprox = proc(poly,d) {
19*412f47f9SXin Li  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
20*412f47f9SXin Li};
21*412f47f9SXin Li
22*412f47f9SXin Li// first coeff is predefine, iteratively find optimal double prec coeffs
23*412f47f9SXin Lipoly = pi*x;
24*412f47f9SXin Lifor i from 0 to (deg-1)/2 do {
25*412f47f9SXin Li  p = roundcoefficients(approx(poly,2*i+1), [|D ...|]);
26*412f47f9SXin Li  poly = poly + x^(2*i+1)*coeff(p,0);
27*412f47f9SXin Li};
28*412f47f9SXin Li
29*412f47f9SXin Lidisplay = hexadecimal;
30*412f47f9SXin Liprint("abs error:", accurateinfnorm(sin(pi*x)-poly(x), [a;b], 30));
31*412f47f9SXin Liprint("in [",a,b,"]");
32*412f47f9SXin Liprint("coeffs:");
33*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
34