xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/tools/sincosf.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating cos(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2023, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Li// This script only finds the coeffs for cos - see math/tools/sin.sollya for sin coeffs.
7*412f47f9SXin Li
8*412f47f9SXin Lideg = 8;   // polynomial degree
9*412f47f9SXin Lia = -pi/4; // interval
10*412f47f9SXin Lib = pi/4;
11*412f47f9SXin Li
12*412f47f9SXin Li// find even polynomial with minimal abs error compared to cos(x)
13*412f47f9SXin Li
14*412f47f9SXin Lif = cos(x);
15*412f47f9SXin Li
16*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
17*412f47f9SXin Liapprox = proc(poly,d) {
18*412f47f9SXin Li  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
19*412f47f9SXin Li};
20*412f47f9SXin Li
21*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
22*412f47f9SXin Lipoly = 1;
23*412f47f9SXin Lifor i from 1 to deg/2 do {
24*412f47f9SXin Li  p = roundcoefficients(approx(poly,2*i), [|single ...|]);
25*412f47f9SXin Li  poly = poly + x^(2*i)*coeff(p,0);
26*412f47f9SXin Li};
27*412f47f9SXin Li
28*412f47f9SXin Lidisplay = hexadecimal;
29*412f47f9SXin Li//print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
30*412f47f9SXin Li//print("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
31*412f47f9SXin Liprint("in [",a,b,"]");
32*412f47f9SXin Liprint("coeffs:");
33*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
34