xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/tools/log1p.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating log(1+x) in double precision
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2022-2023, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 20;
7*412f47f9SXin Li
8*412f47f9SXin Lia = sqrt(2)/2-1;
9*412f47f9SXin Lib = sqrt(2)-1;
10*412f47f9SXin Li
11*412f47f9SXin Lif = proc(y) {
12*412f47f9SXin Li  return log(1+y);
13*412f47f9SXin Li};
14*412f47f9SXin Li
15*412f47f9SXin Liapprox = proc(poly, d) {
16*412f47f9SXin Li  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
17*412f47f9SXin Li};
18*412f47f9SXin Li
19*412f47f9SXin Lipoly = x;
20*412f47f9SXin Lifor i from 2 to deg do {
21*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
22*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
23*412f47f9SXin Li};
24*412f47f9SXin Li
25*412f47f9SXin Li
26*412f47f9SXin Liprint("coeffs:");
27*412f47f9SXin Lidisplay = hexadecimal;
28*412f47f9SXin Lifor i from 2 to deg do coeff(poly,i);
29*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
30*412f47f9SXin Liprint("in [",a,b,"]");
31