xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/tools/log10.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating log10(1+x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019-2023, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 6; // poly degree
7*412f47f9SXin Li// |log10(1+x)| > 0x1p-5 outside the interval
8*412f47f9SXin Lia = -0x1.p-5;
9*412f47f9SXin Lib = 0x1.p-5;
10*412f47f9SXin Li
11*412f47f9SXin Liln10 = evaluate(log(10),0);
12*412f47f9SXin Liinvln10hi = double(1/ln10 + 0x1p21) - 0x1p21; // round away last 21 bits
13*412f47f9SXin Liinvln10lo = double(1/ln10 - invln10hi);
14*412f47f9SXin Li
15*412f47f9SXin Li// find log10(1+x)/x polynomial with minimal relative error
16*412f47f9SXin Li// (minimal relative error polynomial for log10(1+x) is the same * x)
17*412f47f9SXin Lideg = deg-1; // because of /x
18*412f47f9SXin Li
19*412f47f9SXin Li// f = log(1+x)/x; using taylor series
20*412f47f9SXin Lif = 0;
21*412f47f9SXin Lifor i from 0 to 60 do { f = f + (-x)^i/(i+1); };
22*412f47f9SXin Lif = f/ln10;
23*412f47f9SXin Li
24*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
25*412f47f9SXin Liapprox = proc(poly,d) {
26*412f47f9SXin Li  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
27*412f47f9SXin Li};
28*412f47f9SXin Li
29*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
30*412f47f9SXin Lipoly = invln10hi + invln10lo;
31*412f47f9SXin Lifor i from 1 to deg do {
32*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
33*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
34*412f47f9SXin Li};
35*412f47f9SXin Lidisplay = hexadecimal;
36*412f47f9SXin Liprint("invln10hi:", invln10hi);
37*412f47f9SXin Liprint("invln10lo:", invln10lo);
38*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
39*412f47f9SXin Liprint("in [",a,b,"]");
40*412f47f9SXin Liprint("coeffs:");
41*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
42*412f47f9SXin Li
43*412f47f9SXin Lidisplay = decimal;
44*412f47f9SXin Liprint("in [",a,b,"]");
45