1*412f47f9SXin Li// polynomial for approximating atanf(x) 2*412f47f9SXin Li// 3*412f47f9SXin Li// Copyright (c) 2022-2023, Arm Limited. 4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception 5*412f47f9SXin Li 6*412f47f9SXin Li// Generate list of monomials: 7*412f47f9SXin Li// Taylor series of atan is of the form x + ax^3 + bx^5 + cx^7 + ... 8*412f47f9SXin Li// So generate a, b, c, ... such that we can approximate atan(x) by: 9*412f47f9SXin Li// x + x^3 * (a + bx^2 + cx^4 + ...) 10*412f47f9SXin Li 11*412f47f9SXin Lideg = 7; 12*412f47f9SXin Li 13*412f47f9SXin Lia = 1.1754943508222875e-38; 14*412f47f9SXin Lib = 1; 15*412f47f9SXin Li 16*412f47f9SXin Lipoly = fpminimax((atan(sqrt(x))-sqrt(x))/x^(3/2), deg, [|single ...|], [a;b]); 17*412f47f9SXin Li 18*412f47f9SXin Lidisplay = hexadecimal; 19*412f47f9SXin Liprint("coeffs:"); 20*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i); 21