xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/tools/asinh.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating asinh(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2022-2023, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Li// Polynomial is used in [2^-26, 1]. However it is least accurate close to 1, so
7*412f47f9SXin Li// we use 2^-6 as the lower bound for coeff generation, which yields sufficiently
8*412f47f9SXin Li// accurate results in [2^-26, 2^-6].
9*412f47f9SXin Lia = 0x1p-6;
10*412f47f9SXin Lib = 1.0;
11*412f47f9SXin Li
12*412f47f9SXin Lif = (asinh(sqrt(x)) - sqrt(x))/x^(3/2);
13*412f47f9SXin Li
14*412f47f9SXin Liapprox = proc(poly, d) {
15*412f47f9SXin Li  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
16*412f47f9SXin Li};
17*412f47f9SXin Li
18*412f47f9SXin Lipoly = 0;
19*412f47f9SXin Lifor i from 0 to deg do {
20*412f47f9SXin Li  i;
21*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
22*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
23*412f47f9SXin Li};
24*412f47f9SXin Li
25*412f47f9SXin Li
26*412f47f9SXin Lidisplay = hexadecimal;
27*412f47f9SXin Liprint("coeffs:");
28*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
29