1*412f47f9SXin Li /*
2*412f47f9SXin Li * Single-precision vector tan(x) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2020-2023, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include "sv_math.h"
9*412f47f9SXin Li #include "pl_sig.h"
10*412f47f9SXin Li #include "pl_test.h"
11*412f47f9SXin Li
12*412f47f9SXin Li static const struct data
13*412f47f9SXin Li {
14*412f47f9SXin Li float pio2_1, pio2_2, pio2_3, invpio2;
15*412f47f9SXin Li float c1, c3, c5;
16*412f47f9SXin Li float c0, c2, c4, range_val, shift;
17*412f47f9SXin Li } data = {
18*412f47f9SXin Li /* Coefficients generated using:
19*412f47f9SXin Li poly = fpminimax((tan(sqrt(x))-sqrt(x))/x^(3/2),
20*412f47f9SXin Li deg,
21*412f47f9SXin Li [|single ...|],
22*412f47f9SXin Li [a*a;b*b]);
23*412f47f9SXin Li optimize relative error
24*412f47f9SXin Li final prec : 23 bits
25*412f47f9SXin Li deg : 5
26*412f47f9SXin Li a : 0x1p-126 ^ 2
27*412f47f9SXin Li b : ((pi) / 0x1p2) ^ 2
28*412f47f9SXin Li dirty rel error: 0x1.f7c2e4p-25
29*412f47f9SXin Li dirty abs error: 0x1.f7c2ecp-25. */
30*412f47f9SXin Li .c0 = 0x1.55555p-2, .c1 = 0x1.11166p-3,
31*412f47f9SXin Li .c2 = 0x1.b88a78p-5, .c3 = 0x1.7b5756p-6,
32*412f47f9SXin Li .c4 = 0x1.4ef4cep-8, .c5 = 0x1.0e1e74p-7,
33*412f47f9SXin Li
34*412f47f9SXin Li .pio2_1 = 0x1.921fb6p+0f, .pio2_2 = -0x1.777a5cp-25f,
35*412f47f9SXin Li .pio2_3 = -0x1.ee59dap-50f, .invpio2 = 0x1.45f306p-1f,
36*412f47f9SXin Li .range_val = 0x1p15f, .shift = 0x1.8p+23f
37*412f47f9SXin Li };
38*412f47f9SXin Li
39*412f47f9SXin Li static svfloat32_t NOINLINE
special_case(svfloat32_t x,svfloat32_t y,svbool_t cmp)40*412f47f9SXin Li special_case (svfloat32_t x, svfloat32_t y, svbool_t cmp)
41*412f47f9SXin Li {
42*412f47f9SXin Li return sv_call_f32 (tanf, x, y, cmp);
43*412f47f9SXin Li }
44*412f47f9SXin Li
45*412f47f9SXin Li /* Fast implementation of SVE tanf.
46*412f47f9SXin Li Maximum error is 3.45 ULP:
47*412f47f9SXin Li SV_NAME_F1 (tan)(-0x1.e5f0cap+13) got 0x1.ff9856p-1
48*412f47f9SXin Li want 0x1.ff9850p-1. */
SV_NAME_F1(tan)49*412f47f9SXin Li svfloat32_t SV_NAME_F1 (tan) (svfloat32_t x, const svbool_t pg)
50*412f47f9SXin Li {
51*412f47f9SXin Li const struct data *d = ptr_barrier (&data);
52*412f47f9SXin Li
53*412f47f9SXin Li /* Determine whether input is too large to perform fast regression. */
54*412f47f9SXin Li svbool_t cmp = svacge (pg, x, d->range_val);
55*412f47f9SXin Li
56*412f47f9SXin Li svfloat32_t odd_coeffs = svld1rq (svptrue_b32 (), &d->c1);
57*412f47f9SXin Li svfloat32_t pi_vals = svld1rq (svptrue_b32 (), &d->pio2_1);
58*412f47f9SXin Li
59*412f47f9SXin Li /* n = rint(x/(pi/2)). */
60*412f47f9SXin Li svfloat32_t q = svmla_lane (sv_f32 (d->shift), x, pi_vals, 3);
61*412f47f9SXin Li svfloat32_t n = svsub_x (pg, q, d->shift);
62*412f47f9SXin Li /* n is already a signed integer, simply convert it. */
63*412f47f9SXin Li svint32_t in = svcvt_s32_x (pg, n);
64*412f47f9SXin Li /* Determine if x lives in an interval, where |tan(x)| grows to infinity. */
65*412f47f9SXin Li svint32_t alt = svand_x (pg, in, 1);
66*412f47f9SXin Li svbool_t pred_alt = svcmpne (pg, alt, 0);
67*412f47f9SXin Li
68*412f47f9SXin Li /* r = x - n * (pi/2) (range reduction into 0 .. pi/4). */
69*412f47f9SXin Li svfloat32_t r;
70*412f47f9SXin Li r = svmls_lane (x, n, pi_vals, 0);
71*412f47f9SXin Li r = svmls_lane (r, n, pi_vals, 1);
72*412f47f9SXin Li r = svmls_lane (r, n, pi_vals, 2);
73*412f47f9SXin Li
74*412f47f9SXin Li /* If x lives in an interval, where |tan(x)|
75*412f47f9SXin Li - is finite, then use a polynomial approximation of the form
76*412f47f9SXin Li tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2).
77*412f47f9SXin Li - grows to infinity then use symmetries of tangent and the identity
78*412f47f9SXin Li tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use
79*412f47f9SXin Li the same polynomial approximation of tan as above. */
80*412f47f9SXin Li
81*412f47f9SXin Li /* Perform additional reduction if required. */
82*412f47f9SXin Li svfloat32_t z = svneg_m (r, pred_alt, r);
83*412f47f9SXin Li
84*412f47f9SXin Li /* Evaluate polynomial approximation of tangent on [-pi/4, pi/4],
85*412f47f9SXin Li using Estrin on z^2. */
86*412f47f9SXin Li svfloat32_t z2 = svmul_x (pg, z, z);
87*412f47f9SXin Li svfloat32_t p01 = svmla_lane (sv_f32 (d->c0), z2, odd_coeffs, 0);
88*412f47f9SXin Li svfloat32_t p23 = svmla_lane (sv_f32 (d->c2), z2, odd_coeffs, 1);
89*412f47f9SXin Li svfloat32_t p45 = svmla_lane (sv_f32 (d->c4), z2, odd_coeffs, 2);
90*412f47f9SXin Li
91*412f47f9SXin Li svfloat32_t z4 = svmul_x (pg, z2, z2);
92*412f47f9SXin Li svfloat32_t p = svmla_x (pg, p01, z4, p23);
93*412f47f9SXin Li
94*412f47f9SXin Li svfloat32_t z8 = svmul_x (pg, z4, z4);
95*412f47f9SXin Li p = svmla_x (pg, p, z8, p45);
96*412f47f9SXin Li
97*412f47f9SXin Li svfloat32_t y = svmla_x (pg, z, p, svmul_x (pg, z, z2));
98*412f47f9SXin Li
99*412f47f9SXin Li /* Transform result back, if necessary. */
100*412f47f9SXin Li svfloat32_t inv_y = svdivr_x (pg, y, 1.0f);
101*412f47f9SXin Li
102*412f47f9SXin Li /* No need to pass pg to specialcase here since cmp is a strict subset,
103*412f47f9SXin Li guaranteed by the cmpge above. */
104*412f47f9SXin Li if (unlikely (svptest_any (pg, cmp)))
105*412f47f9SXin Li return special_case (x, svsel (pred_alt, inv_y, y), cmp);
106*412f47f9SXin Li
107*412f47f9SXin Li return svsel (pred_alt, inv_y, y);
108*412f47f9SXin Li }
109*412f47f9SXin Li
110*412f47f9SXin Li PL_SIG (SV, F, 1, tan, -3.1, 3.1)
111*412f47f9SXin Li PL_TEST_ULP (SV_NAME_F1 (tan), 2.96)
112*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), -0.0, -0x1p126, 100)
113*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 0x1p-149, 0x1p-126, 4000)
114*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 0x1p-126, 0x1p-23, 50000)
115*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 0x1p-23, 0.7, 50000)
116*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 0.7, 1.5, 50000)
117*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 1.5, 100, 50000)
118*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 100, 0x1p17, 50000)
119*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (tan), 0x1p17, inf, 50000)
120