1*412f47f9SXin Li /*
2*412f47f9SXin Li * Single-precision vector log(x + 1) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2023, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include "sv_math.h"
9*412f47f9SXin Li #include "pl_sig.h"
10*412f47f9SXin Li #include "pl_test.h"
11*412f47f9SXin Li #include "poly_sve_f32.h"
12*412f47f9SXin Li
13*412f47f9SXin Li static const struct data
14*412f47f9SXin Li {
15*412f47f9SXin Li float poly[8];
16*412f47f9SXin Li float ln2, exp_bias;
17*412f47f9SXin Li uint32_t four, three_quarters;
18*412f47f9SXin Li } data = {.poly = {/* Do not store first term of polynomial, which is -0.5, as
19*412f47f9SXin Li this can be fmov-ed directly instead of including it in
20*412f47f9SXin Li the main load-and-mla polynomial schedule. */
21*412f47f9SXin Li 0x1.5555aap-2f, -0x1.000038p-2f, 0x1.99675cp-3f,
22*412f47f9SXin Li -0x1.54ef78p-3f, 0x1.28a1f4p-3f, -0x1.0da91p-3f,
23*412f47f9SXin Li 0x1.abcb6p-4f, -0x1.6f0d5ep-5f},
24*412f47f9SXin Li .ln2 = 0x1.62e43p-1f,
25*412f47f9SXin Li .exp_bias = 0x1p-23f,
26*412f47f9SXin Li .four = 0x40800000,
27*412f47f9SXin Li .three_quarters = 0x3f400000};
28*412f47f9SXin Li
29*412f47f9SXin Li #define SignExponentMask 0xff800000
30*412f47f9SXin Li
31*412f47f9SXin Li static svfloat32_t NOINLINE
special_case(svfloat32_t x,svfloat32_t y,svbool_t special)32*412f47f9SXin Li special_case (svfloat32_t x, svfloat32_t y, svbool_t special)
33*412f47f9SXin Li {
34*412f47f9SXin Li return sv_call_f32 (log1pf, x, y, special);
35*412f47f9SXin Li }
36*412f47f9SXin Li
37*412f47f9SXin Li /* Vector log1pf approximation using polynomial on reduced interval. Worst-case
38*412f47f9SXin Li error is 1.27 ULP very close to 0.5.
39*412f47f9SXin Li _ZGVsMxv_log1pf(0x1.fffffep-2) got 0x1.9f324p-2
40*412f47f9SXin Li want 0x1.9f323ep-2. */
SV_NAME_F1(log1p)41*412f47f9SXin Li svfloat32_t SV_NAME_F1 (log1p) (svfloat32_t x, svbool_t pg)
42*412f47f9SXin Li {
43*412f47f9SXin Li const struct data *d = ptr_barrier (&data);
44*412f47f9SXin Li /* x < -1, Inf/Nan. */
45*412f47f9SXin Li svbool_t special = svcmpeq (pg, svreinterpret_u32 (x), 0x7f800000);
46*412f47f9SXin Li special = svorn_z (pg, special, svcmpge (pg, x, -1));
47*412f47f9SXin Li
48*412f47f9SXin Li /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m
49*412f47f9SXin Li is in [-0.25, 0.5]):
50*412f47f9SXin Li log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2).
51*412f47f9SXin Li
52*412f47f9SXin Li We approximate log1p(m) with a polynomial, then scale by
53*412f47f9SXin Li k*log(2). Instead of doing this directly, we use an intermediate
54*412f47f9SXin Li scale factor s = 4*k*log(2) to ensure the scale is representable
55*412f47f9SXin Li as a normalised fp32 number. */
56*412f47f9SXin Li svfloat32_t m = svadd_x (pg, x, 1);
57*412f47f9SXin Li
58*412f47f9SXin Li /* Choose k to scale x to the range [-1/4, 1/2]. */
59*412f47f9SXin Li svint32_t k
60*412f47f9SXin Li = svand_x (pg, svsub_x (pg, svreinterpret_s32 (m), d->three_quarters),
61*412f47f9SXin Li sv_s32 (SignExponentMask));
62*412f47f9SXin Li
63*412f47f9SXin Li /* Scale x by exponent manipulation. */
64*412f47f9SXin Li svfloat32_t m_scale = svreinterpret_f32 (
65*412f47f9SXin Li svsub_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (k)));
66*412f47f9SXin Li
67*412f47f9SXin Li /* Scale up to ensure that the scale factor is representable as normalised
68*412f47f9SXin Li fp32 number, and scale m down accordingly. */
69*412f47f9SXin Li svfloat32_t s = svreinterpret_f32 (svsubr_x (pg, k, d->four));
70*412f47f9SXin Li m_scale = svadd_x (pg, m_scale, svmla_x (pg, sv_f32 (-1), s, 0.25));
71*412f47f9SXin Li
72*412f47f9SXin Li /* Evaluate polynomial on reduced interval. */
73*412f47f9SXin Li svfloat32_t ms2 = svmul_x (pg, m_scale, m_scale),
74*412f47f9SXin Li ms4 = svmul_x (pg, ms2, ms2);
75*412f47f9SXin Li svfloat32_t p = sv_estrin_7_f32_x (pg, m_scale, ms2, ms4, d->poly);
76*412f47f9SXin Li p = svmad_x (pg, m_scale, p, -0.5);
77*412f47f9SXin Li p = svmla_x (pg, m_scale, m_scale, svmul_x (pg, m_scale, p));
78*412f47f9SXin Li
79*412f47f9SXin Li /* The scale factor to be applied back at the end - by multiplying float(k)
80*412f47f9SXin Li by 2^-23 we get the unbiased exponent of k. */
81*412f47f9SXin Li svfloat32_t scale_back = svmul_x (pg, svcvt_f32_x (pg, k), d->exp_bias);
82*412f47f9SXin Li
83*412f47f9SXin Li /* Apply the scaling back. */
84*412f47f9SXin Li svfloat32_t y = svmla_x (pg, p, scale_back, d->ln2);
85*412f47f9SXin Li
86*412f47f9SXin Li if (unlikely (svptest_any (pg, special)))
87*412f47f9SXin Li return special_case (x, y, special);
88*412f47f9SXin Li
89*412f47f9SXin Li return y;
90*412f47f9SXin Li }
91*412f47f9SXin Li
92*412f47f9SXin Li PL_SIG (SV, F, 1, log1p, -0.9, 10.0)
93*412f47f9SXin Li PL_TEST_ULP (SV_NAME_F1 (log1p), 0.77)
94*412f47f9SXin Li PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0, 0x1p-23, 5000)
95*412f47f9SXin Li PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0x1p-23, 1, 5000)
96*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (log1p), 1, inf, 10000)
97*412f47f9SXin Li PL_TEST_INTERVAL (SV_NAME_F1 (log1p), -1, -inf, 10)
98