xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/sinpif_2u5.c (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Single-precision scalar sinpi function.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2023, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include "mathlib.h"
9*412f47f9SXin Li #include "math_config.h"
10*412f47f9SXin Li #include "pl_sig.h"
11*412f47f9SXin Li #include "pl_test.h"
12*412f47f9SXin Li 
13*412f47f9SXin Li /* Taylor series coefficents for sin(pi * x).  */
14*412f47f9SXin Li #define C0 0x1.921fb6p1f
15*412f47f9SXin Li #define C1 -0x1.4abbcep2f
16*412f47f9SXin Li #define C2 0x1.466bc6p1f
17*412f47f9SXin Li #define C3 -0x1.32d2ccp-1f
18*412f47f9SXin Li #define C4 0x1.50783p-4f
19*412f47f9SXin Li #define C5 -0x1.e30750p-8f
20*412f47f9SXin Li 
21*412f47f9SXin Li #define Shift 0x1.0p+23f
22*412f47f9SXin Li 
23*412f47f9SXin Li /* Approximation for scalar single-precision sinpi(x) - sinpif.
24*412f47f9SXin Li    Maximum error: 2.48 ULP:
25*412f47f9SXin Li    sinpif(0x1.d062b6p-2) got 0x1.fa8c06p-1
26*412f47f9SXin Li 			want 0x1.fa8c02p-1.  */
27*412f47f9SXin Li float
sinpif(float x)28*412f47f9SXin Li sinpif (float x)
29*412f47f9SXin Li {
30*412f47f9SXin Li   if (isinf (x))
31*412f47f9SXin Li     return __math_invalidf (x);
32*412f47f9SXin Li 
33*412f47f9SXin Li   float r = asfloat (asuint (x) & ~0x80000000);
34*412f47f9SXin Li   uint32_t sign = asuint (x) & 0x80000000;
35*412f47f9SXin Li 
36*412f47f9SXin Li   /* Edge cases for when sinpif should be exactly 0. (Integers)
37*412f47f9SXin Li      0x1p23 is the limit for single precision to store any decimal places.  */
38*412f47f9SXin Li   if (r >= 0x1p23f)
39*412f47f9SXin Li     return 0;
40*412f47f9SXin Li 
41*412f47f9SXin Li   int32_t m = roundf (r);
42*412f47f9SXin Li   if (m == r)
43*412f47f9SXin Li     return 0;
44*412f47f9SXin Li 
45*412f47f9SXin Li   /* For very small inputs, squaring r causes underflow.
46*412f47f9SXin Li      Values below this threshold can be approximated via sinpi(x) ~= pi*x.  */
47*412f47f9SXin Li   if (r < 0x1p-31f)
48*412f47f9SXin Li     return C0 * x;
49*412f47f9SXin Li 
50*412f47f9SXin Li   /* Any non-integer values >= 0x1p22f will be int + 0.5.
51*412f47f9SXin Li      These values should return exactly 1 or -1.  */
52*412f47f9SXin Li   if (r >= 0x1p22f)
53*412f47f9SXin Li     {
54*412f47f9SXin Li       uint32_t iy = ((m & 1) << 31) ^ asuint (-1.0f);
55*412f47f9SXin Li       return asfloat (sign ^ iy);
56*412f47f9SXin Li     }
57*412f47f9SXin Li 
58*412f47f9SXin Li   /* n = rint(|x|).  */
59*412f47f9SXin Li   float n = r + Shift;
60*412f47f9SXin Li   sign ^= (asuint (n) << 31);
61*412f47f9SXin Li   n = n - Shift;
62*412f47f9SXin Li 
63*412f47f9SXin Li   /* r = |x| - n (range reduction into -1/2 .. 1/2).  */
64*412f47f9SXin Li   r = r - n;
65*412f47f9SXin Li 
66*412f47f9SXin Li   /* y = sin(pi * r).  */
67*412f47f9SXin Li   float r2 = r * r;
68*412f47f9SXin Li   float y = fmaf (C5, r2, C4);
69*412f47f9SXin Li   y = fmaf (y, r2, C3);
70*412f47f9SXin Li   y = fmaf (y, r2, C2);
71*412f47f9SXin Li   y = fmaf (y, r2, C1);
72*412f47f9SXin Li   y = fmaf (y, r2, C0);
73*412f47f9SXin Li 
74*412f47f9SXin Li   /* Copy sign of x to sin(|x|).  */
75*412f47f9SXin Li   return asfloat (asuint (y * r) ^ sign);
76*412f47f9SXin Li }
77*412f47f9SXin Li 
78*412f47f9SXin Li PL_SIG (S, F, 1, sinpi, -0.9, 0.9)
79*412f47f9SXin Li PL_TEST_ULP (sinpif, 1.99)
80*412f47f9SXin Li PL_TEST_SYM_INTERVAL (sinpif, 0, 0x1p-31, 5000)
81*412f47f9SXin Li PL_TEST_SYM_INTERVAL (sinpif, 0x1p-31, 0.5, 10000)
82*412f47f9SXin Li PL_TEST_SYM_INTERVAL (sinpif, 0.5, 0x1p22f, 10000)
83*412f47f9SXin Li PL_TEST_SYM_INTERVAL (sinpif, 0x1p22f, inf, 10000)
84