xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/log10_2u.c (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Double-precision log10(x) function.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2020-2023, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include "math_config.h"
9*412f47f9SXin Li #include "pl_sig.h"
10*412f47f9SXin Li #include "pl_test.h"
11*412f47f9SXin Li 
12*412f47f9SXin Li /* Polynomial coefficients and lookup tables.  */
13*412f47f9SXin Li #define T __log10_data.tab
14*412f47f9SXin Li #define T2 __log10_data.tab2
15*412f47f9SXin Li #define B __log10_data.poly1
16*412f47f9SXin Li #define A __log10_data.poly
17*412f47f9SXin Li #define Ln2hi __log10_data.ln2hi
18*412f47f9SXin Li #define Ln2lo __log10_data.ln2lo
19*412f47f9SXin Li #define InvLn10 __log10_data.invln10
20*412f47f9SXin Li #define N (1 << LOG10_TABLE_BITS)
21*412f47f9SXin Li #define OFF 0x3fe6000000000000
22*412f47f9SXin Li #define LO asuint64 (1.0 - 0x1p-4)
23*412f47f9SXin Li #define HI asuint64 (1.0 + 0x1.09p-4)
24*412f47f9SXin Li 
25*412f47f9SXin Li /* Top 16 bits of a double.  */
26*412f47f9SXin Li static inline uint32_t
top16(double x)27*412f47f9SXin Li top16 (double x)
28*412f47f9SXin Li {
29*412f47f9SXin Li   return asuint64 (x) >> 48;
30*412f47f9SXin Li }
31*412f47f9SXin Li 
32*412f47f9SXin Li /* Fast and low accuracy implementation of log10.
33*412f47f9SXin Li    The implementation is similar to that of math/log, except that:
34*412f47f9SXin Li    - Polynomials are computed for log10(1+r) with r on same intervals as log.
35*412f47f9SXin Li    - Lookup parameters are scaled (at runtime) to switch from base e to base 10.
36*412f47f9SXin Li    Many errors above 1.59 ulp are observed across the whole range of doubles.
37*412f47f9SXin Li    The greatest observed error is 1.61 ulp, at around 0.965:
38*412f47f9SXin Li    log10(0x1.dc8710333a29bp-1) got -0x1.fee26884905a6p-6
39*412f47f9SXin Li 			      want -0x1.fee26884905a8p-6.  */
40*412f47f9SXin Li double
log10(double x)41*412f47f9SXin Li log10 (double x)
42*412f47f9SXin Li {
43*412f47f9SXin Li   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
44*412f47f9SXin Li   double_t w, z, r, r2, r3, y, invc, logc, kd, hi, lo;
45*412f47f9SXin Li   uint64_t ix, iz, tmp;
46*412f47f9SXin Li   uint32_t top;
47*412f47f9SXin Li   int k, i;
48*412f47f9SXin Li 
49*412f47f9SXin Li   ix = asuint64 (x);
50*412f47f9SXin Li   top = top16 (x);
51*412f47f9SXin Li 
52*412f47f9SXin Li   if (unlikely (ix - LO < HI - LO))
53*412f47f9SXin Li     {
54*412f47f9SXin Li       /* Handle close to 1.0 inputs separately.  */
55*412f47f9SXin Li       /* Fix sign of zero with downward rounding when x==1.  */
56*412f47f9SXin Li       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
57*412f47f9SXin Li 	return 0;
58*412f47f9SXin Li       r = x - 1.0;
59*412f47f9SXin Li       r2 = r * r;
60*412f47f9SXin Li       r3 = r * r2;
61*412f47f9SXin Li       y = r3
62*412f47f9SXin Li 	  * (B[1] + r * B[2] + r2 * B[3]
63*412f47f9SXin Li 	     + r3
64*412f47f9SXin Li 		 * (B[4] + r * B[5] + r2 * B[6]
65*412f47f9SXin Li 		    + r3 * (B[7] + r * B[8] + r2 * B[9] + r3 * B[10])));
66*412f47f9SXin Li       /* Worst-case error is around 0.507 ULP.  */
67*412f47f9SXin Li       w = r * 0x1p27;
68*412f47f9SXin Li       double_t rhi = r + w - w;
69*412f47f9SXin Li       double_t rlo = r - rhi;
70*412f47f9SXin Li       w = rhi * rhi * B[0];
71*412f47f9SXin Li       hi = r + w;
72*412f47f9SXin Li       lo = r - hi + w;
73*412f47f9SXin Li       lo += B[0] * rlo * (rhi + r);
74*412f47f9SXin Li       y += lo;
75*412f47f9SXin Li       y += hi;
76*412f47f9SXin Li       /* Scale by 1/ln(10). Polynomial already contains scaling.  */
77*412f47f9SXin Li       y = y * InvLn10;
78*412f47f9SXin Li 
79*412f47f9SXin Li       return eval_as_double (y);
80*412f47f9SXin Li     }
81*412f47f9SXin Li   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
82*412f47f9SXin Li     {
83*412f47f9SXin Li       /* x < 0x1p-1022 or inf or nan.  */
84*412f47f9SXin Li       if (ix * 2 == 0)
85*412f47f9SXin Li 	return __math_divzero (1);
86*412f47f9SXin Li       if (ix == asuint64 (INFINITY)) /* log10(inf) == inf.  */
87*412f47f9SXin Li 	return x;
88*412f47f9SXin Li       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
89*412f47f9SXin Li 	return __math_invalid (x);
90*412f47f9SXin Li       /* x is subnormal, normalize it.  */
91*412f47f9SXin Li       ix = asuint64 (x * 0x1p52);
92*412f47f9SXin Li       ix -= 52ULL << 52;
93*412f47f9SXin Li     }
94*412f47f9SXin Li 
95*412f47f9SXin Li   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
96*412f47f9SXin Li      The range is split into N subintervals.
97*412f47f9SXin Li      The ith subinterval contains z and c is near its center.  */
98*412f47f9SXin Li   tmp = ix - OFF;
99*412f47f9SXin Li   i = (tmp >> (52 - LOG10_TABLE_BITS)) % N;
100*412f47f9SXin Li   k = (int64_t) tmp >> 52; /* arithmetic shift.  */
101*412f47f9SXin Li   iz = ix - (tmp & 0xfffULL << 52);
102*412f47f9SXin Li   invc = T[i].invc;
103*412f47f9SXin Li   logc = T[i].logc;
104*412f47f9SXin Li   z = asdouble (iz);
105*412f47f9SXin Li 
106*412f47f9SXin Li   /* log(x) = log1p(z/c-1) + log(c) + k*Ln2.  */
107*412f47f9SXin Li   /* r ~= z/c - 1, |r| < 1/(2*N).  */
108*412f47f9SXin Li #if HAVE_FAST_FMA
109*412f47f9SXin Li   /* rounding error: 0x1p-55/N.  */
110*412f47f9SXin Li   r = fma (z, invc, -1.0);
111*412f47f9SXin Li #else
112*412f47f9SXin Li   /* rounding error: 0x1p-55/N + 0x1p-66.  */
113*412f47f9SXin Li   r = (z - T2[i].chi - T2[i].clo) * invc;
114*412f47f9SXin Li #endif
115*412f47f9SXin Li   kd = (double_t) k;
116*412f47f9SXin Li 
117*412f47f9SXin Li   /* w = log(c) + k*Ln2hi.  */
118*412f47f9SXin Li   w = kd * Ln2hi + logc;
119*412f47f9SXin Li   hi = w + r;
120*412f47f9SXin Li   lo = w - hi + r + kd * Ln2lo;
121*412f47f9SXin Li 
122*412f47f9SXin Li   /* log10(x) = (w + r)/log(10) + (log10(1+r) - r/log(10)).  */
123*412f47f9SXin Li   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
124*412f47f9SXin Li 
125*412f47f9SXin Li   /* Scale by 1/ln(10). Polynomial already contains scaling.  */
126*412f47f9SXin Li   y = lo + r2 * A[0] + r * r2 * (A[1] + r * A[2] + r2 * (A[3] + r * A[4])) + hi;
127*412f47f9SXin Li   y = y * InvLn10;
128*412f47f9SXin Li 
129*412f47f9SXin Li   return eval_as_double (y);
130*412f47f9SXin Li }
131*412f47f9SXin Li 
132*412f47f9SXin Li // clang-format off
133*412f47f9SXin Li #if USE_GLIBC_ABI
strong_alias(log10,__log10_finite)134*412f47f9SXin Li strong_alias (log10, __log10_finite)
135*412f47f9SXin Li hidden_alias (log10, __ieee754_log10)
136*412f47f9SXin Li #if LDBL_MANT_DIG == 53
137*412f47f9SXin Li long double
138*412f47f9SXin Li log10l (long double x)
139*412f47f9SXin Li {
140*412f47f9SXin Li   return log10 (x);
141*412f47f9SXin Li }
142*412f47f9SXin Li #endif
143*412f47f9SXin Li #endif
144*412f47f9SXin Li // clang-format on
145*412f47f9SXin Li 
146*412f47f9SXin Li PL_SIG (S, D, 1, log10, 0.01, 11.1)
147*412f47f9SXin Li PL_TEST_ULP (log10, 1.11)
148*412f47f9SXin Li PL_TEST_INTERVAL (log10, 0, 0xffff000000000000, 10000)
149*412f47f9SXin Li PL_TEST_INTERVAL (log10, 0x1p-4, 0x1p4, 40000)
150*412f47f9SXin Li PL_TEST_INTERVAL (log10, 0, inf, 40000)
151