xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/erff_2u.c (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Single-precision erf(x) function.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2023, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include "math_config.h"
9*412f47f9SXin Li #include "pl_sig.h"
10*412f47f9SXin Li #include "pl_test.h"
11*412f47f9SXin Li 
12*412f47f9SXin Li #define TwoOverSqrtPiMinusOne 0x1.06eba8p-3f
13*412f47f9SXin Li #define Shift 0x1p16f
14*412f47f9SXin Li #define OneThird 0x1.555556p-2f
15*412f47f9SXin Li 
16*412f47f9SXin Li /* Fast erff approximation based on series expansion near x rounded to
17*412f47f9SXin Li    nearest multiple of 1/128.
18*412f47f9SXin Li    Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r,
19*412f47f9SXin Li 
20*412f47f9SXin Li    erf(x) ~ erf(r)
21*412f47f9SXin Li      + scale * d * [
22*412f47f9SXin Li        + 1
23*412f47f9SXin Li        - r d
24*412f47f9SXin Li        + 1/3 (2 r^2 - 1) d^2
25*412f47f9SXin Li        - 1/6 (r (2 r^2 - 3) ) d^3
26*412f47f9SXin Li        + 1/30 (4 r^4 - 12 r^2 + 3) d^4
27*412f47f9SXin Li      ]
28*412f47f9SXin Li 
29*412f47f9SXin Li    This single precision implementation uses only the following terms:
30*412f47f9SXin Li 
31*412f47f9SXin Li    erf(x) ~ erf(r) + scale * d * [1 - r * d - 1/3 * d^2]
32*412f47f9SXin Li 
33*412f47f9SXin Li    Values of erf(r) and scale are read from lookup tables.
34*412f47f9SXin Li    For |x| > 3.9375, erf(|x|) rounds to 1.0f.
35*412f47f9SXin Li 
36*412f47f9SXin Li    Maximum error: 1.93 ULP
37*412f47f9SXin Li    erff(0x1.c373e6p-9) got 0x1.fd686cp-9
38*412f47f9SXin Li 		      want 0x1.fd6868p-9.  */
39*412f47f9SXin Li float
erff(float x)40*412f47f9SXin Li erff (float x)
41*412f47f9SXin Li {
42*412f47f9SXin Li   /* Get absolute value and sign.  */
43*412f47f9SXin Li   uint32_t ix = asuint (x);
44*412f47f9SXin Li   uint32_t ia = ix & 0x7fffffff;
45*412f47f9SXin Li   uint32_t sign = ix & ~0x7fffffff;
46*412f47f9SXin Li 
47*412f47f9SXin Li   /* |x| < 0x1p-62. Triggers exceptions.  */
48*412f47f9SXin Li   if (unlikely (ia < 0x20800000))
49*412f47f9SXin Li     return fmaf (TwoOverSqrtPiMinusOne, x, x);
50*412f47f9SXin Li 
51*412f47f9SXin Li   if (ia < 0x407b8000) /* |x| <  4 - 8 / 128 = 3.9375.  */
52*412f47f9SXin Li     {
53*412f47f9SXin Li       /* Lookup erf(r) and scale(r) in tables, e.g. set erf(r) to 0 and scale
54*412f47f9SXin Li 	 to 2/sqrt(pi), when x reduced to r = 0.  */
55*412f47f9SXin Li       float a = asfloat (ia);
56*412f47f9SXin Li       float z = a + Shift;
57*412f47f9SXin Li       uint32_t i = asuint (z) - asuint (Shift);
58*412f47f9SXin Li       float r = z - Shift;
59*412f47f9SXin Li       float erfr = __erff_data.tab[i].erf;
60*412f47f9SXin Li       float scale = __erff_data.tab[i].scale;
61*412f47f9SXin Li 
62*412f47f9SXin Li       /* erf(x) ~ erf(r) + scale * d * (1 - r * d - 1/3 * d^2).  */
63*412f47f9SXin Li       float d = a - r;
64*412f47f9SXin Li       float d2 = d * d;
65*412f47f9SXin Li       float y = -fmaf (OneThird, d, r);
66*412f47f9SXin Li       y = fmaf (fmaf (y, d2, d), scale, erfr);
67*412f47f9SXin Li       return asfloat (asuint (y) | sign);
68*412f47f9SXin Li     }
69*412f47f9SXin Li 
70*412f47f9SXin Li   /* Special cases : erff(nan)=nan, erff(+inf)=+1 and erff(-inf)=-1.  */
71*412f47f9SXin Li   if (unlikely (ia >= 0x7f800000))
72*412f47f9SXin Li     return (1.0f - (float) (sign >> 30)) + 1.0f / x;
73*412f47f9SXin Li 
74*412f47f9SXin Li   /* Boring domain (|x| >= 4.0).  */
75*412f47f9SXin Li   return asfloat (sign | asuint (1.0f));
76*412f47f9SXin Li }
77*412f47f9SXin Li 
78*412f47f9SXin Li PL_SIG (S, F, 1, erf, -4.0, 4.0)
79*412f47f9SXin Li PL_TEST_ULP (erff, 1.43)
80*412f47f9SXin Li PL_TEST_SYM_INTERVAL (erff, 0, 3.9375, 40000)
81*412f47f9SXin Li PL_TEST_SYM_INTERVAL (erff, 3.9375, inf, 40000)
82*412f47f9SXin Li PL_TEST_SYM_INTERVAL (erff, 0, inf, 40000)
83