xref: /aosp_15_r20/external/arm-optimized-routines/pl/math/atan_2u5.c (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li /*
2*412f47f9SXin Li  * Double-precision atan(x) function.
3*412f47f9SXin Li  *
4*412f47f9SXin Li  * Copyright (c) 2022-2023, Arm Limited.
5*412f47f9SXin Li  * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li  */
7*412f47f9SXin Li 
8*412f47f9SXin Li #include "pl_sig.h"
9*412f47f9SXin Li #include "pl_test.h"
10*412f47f9SXin Li #include "atan_common.h"
11*412f47f9SXin Li 
12*412f47f9SXin Li #define AbsMask 0x7fffffffffffffff
13*412f47f9SXin Li #define PiOver2 0x1.921fb54442d18p+0
14*412f47f9SXin Li #define TinyBound 0x3e1 /* top12(asuint64(0x1p-30)).  */
15*412f47f9SXin Li #define BigBound 0x434	/* top12(asuint64(0x1p53)).  */
16*412f47f9SXin Li #define OneTop 0x3ff
17*412f47f9SXin Li 
18*412f47f9SXin Li /* Fast implementation of double-precision atan.
19*412f47f9SXin Li    Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
20*412f47f9SXin Li    z=1/x and shift = pi/2. Maximum observed error is 2.27 ulps:
21*412f47f9SXin Li    atan(0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
22*412f47f9SXin Li 			     want 0x1.9225645bdd7c3p-1.  */
23*412f47f9SXin Li double
atan(double x)24*412f47f9SXin Li atan (double x)
25*412f47f9SXin Li {
26*412f47f9SXin Li   uint64_t ix = asuint64 (x);
27*412f47f9SXin Li   uint64_t sign = ix & ~AbsMask;
28*412f47f9SXin Li   uint64_t ia = ix & AbsMask;
29*412f47f9SXin Li   uint32_t ia12 = ia >> 52;
30*412f47f9SXin Li 
31*412f47f9SXin Li   if (unlikely (ia12 >= BigBound || ia12 < TinyBound))
32*412f47f9SXin Li     {
33*412f47f9SXin Li       if (ia12 < TinyBound)
34*412f47f9SXin Li 	/* Avoid underflow by returning x.  */
35*412f47f9SXin Li 	return x;
36*412f47f9SXin Li       if (ia > 0x7ff0000000000000)
37*412f47f9SXin Li 	/* Propagate NaN.  */
38*412f47f9SXin Li 	return __math_invalid (x);
39*412f47f9SXin Li       /* atan(x) rounds to PiOver2 for large x.  */
40*412f47f9SXin Li       return asdouble (asuint64 (PiOver2) ^ sign);
41*412f47f9SXin Li     }
42*412f47f9SXin Li 
43*412f47f9SXin Li   double z, az, shift;
44*412f47f9SXin Li   if (ia12 >= OneTop)
45*412f47f9SXin Li     {
46*412f47f9SXin Li       /* For x > 1, use atan(x) = pi / 2 + atan(-1 / x).  */
47*412f47f9SXin Li       z = -1.0 / x;
48*412f47f9SXin Li       shift = PiOver2;
49*412f47f9SXin Li       /* Use absolute value only when needed (odd powers of z).  */
50*412f47f9SXin Li       az = -fabs (z);
51*412f47f9SXin Li     }
52*412f47f9SXin Li   else
53*412f47f9SXin Li     {
54*412f47f9SXin Li       /* For x < 1, approximate atan(x) directly.  */
55*412f47f9SXin Li       z = x;
56*412f47f9SXin Li       shift = 0;
57*412f47f9SXin Li       az = asdouble (ia);
58*412f47f9SXin Li     }
59*412f47f9SXin Li 
60*412f47f9SXin Li   /* Calculate polynomial, shift + z + z^3 * P(z^2).  */
61*412f47f9SXin Li   double y = eval_poly (z, az, shift);
62*412f47f9SXin Li   /* Copy sign.  */
63*412f47f9SXin Li   return asdouble (asuint64 (y) ^ sign);
64*412f47f9SXin Li }
65*412f47f9SXin Li 
66*412f47f9SXin Li PL_SIG (S, D, 1, atan, -10.0, 10.0)
67*412f47f9SXin Li PL_TEST_ULP (atan, 1.78)
68*412f47f9SXin Li PL_TEST_INTERVAL (atan, 0, 0x1p-30, 10000)
69*412f47f9SXin Li PL_TEST_INTERVAL (atan, -0, -0x1p-30, 1000)
70*412f47f9SXin Li PL_TEST_INTERVAL (atan, 0x1p-30, 0x1p53, 900000)
71*412f47f9SXin Li PL_TEST_INTERVAL (atan, -0x1p-30, -0x1p53, 90000)
72*412f47f9SXin Li PL_TEST_INTERVAL (atan, 0x1p53, inf, 10000)
73*412f47f9SXin Li PL_TEST_INTERVAL (atan, -0x1p53, -inf, 1000)
74