1*412f47f9SXin Li /*
2*412f47f9SXin Li * Single-precision scalar atan2(x) function.
3*412f47f9SXin Li *
4*412f47f9SXin Li * Copyright (c) 2021-2023, Arm Limited.
5*412f47f9SXin Li * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6*412f47f9SXin Li */
7*412f47f9SXin Li
8*412f47f9SXin Li #include <stdbool.h>
9*412f47f9SXin Li
10*412f47f9SXin Li #include "atanf_common.h"
11*412f47f9SXin Li #include "math_config.h"
12*412f47f9SXin Li #include "pl_sig.h"
13*412f47f9SXin Li #include "pl_test.h"
14*412f47f9SXin Li
15*412f47f9SXin Li #define Pi (0x1.921fb6p+1f)
16*412f47f9SXin Li #define PiOver2 (0x1.921fb6p+0f)
17*412f47f9SXin Li #define PiOver4 (0x1.921fb6p-1f)
18*412f47f9SXin Li #define SignMask (0x80000000)
19*412f47f9SXin Li
20*412f47f9SXin Li /* We calculate atan2f by P(n/d), where n and d are similar to the input
21*412f47f9SXin Li arguments, and P is a polynomial. The polynomial may underflow.
22*412f47f9SXin Li POLY_UFLOW_BOUND is the lower bound of the difference in exponents of n and d
23*412f47f9SXin Li for which P underflows, and is used to special-case such inputs. */
24*412f47f9SXin Li #define POLY_UFLOW_BOUND 24
25*412f47f9SXin Li
26*412f47f9SXin Li static inline int32_t
biased_exponent(float f)27*412f47f9SXin Li biased_exponent (float f)
28*412f47f9SXin Li {
29*412f47f9SXin Li uint32_t fi = asuint (f);
30*412f47f9SXin Li int32_t ex = (int32_t) ((fi & 0x7f800000) >> 23);
31*412f47f9SXin Li if (unlikely (ex == 0))
32*412f47f9SXin Li {
33*412f47f9SXin Li /* Subnormal case - we still need to get the exponent right for subnormal
34*412f47f9SXin Li numbers as division may take us back inside the normal range. */
35*412f47f9SXin Li return ex - __builtin_clz (fi << 9);
36*412f47f9SXin Li }
37*412f47f9SXin Li return ex;
38*412f47f9SXin Li }
39*412f47f9SXin Li
40*412f47f9SXin Li /* Fast implementation of scalar atan2f. Largest observed error is
41*412f47f9SXin Li 2.88ulps in [99.0, 101.0] x [99.0, 101.0]:
42*412f47f9SXin Li atan2f(0x1.9332d8p+6, 0x1.8cb6c4p+6) got 0x1.964646p-1
43*412f47f9SXin Li want 0x1.964640p-1. */
44*412f47f9SXin Li float
atan2f(float y,float x)45*412f47f9SXin Li atan2f (float y, float x)
46*412f47f9SXin Li {
47*412f47f9SXin Li uint32_t ix = asuint (x);
48*412f47f9SXin Li uint32_t iy = asuint (y);
49*412f47f9SXin Li
50*412f47f9SXin Li uint32_t sign_x = ix & SignMask;
51*412f47f9SXin Li uint32_t sign_y = iy & SignMask;
52*412f47f9SXin Li
53*412f47f9SXin Li uint32_t iax = ix & ~SignMask;
54*412f47f9SXin Li uint32_t iay = iy & ~SignMask;
55*412f47f9SXin Li
56*412f47f9SXin Li /* x or y is NaN. */
57*412f47f9SXin Li if ((iax > 0x7f800000) || (iay > 0x7f800000))
58*412f47f9SXin Li return x + y;
59*412f47f9SXin Li
60*412f47f9SXin Li /* m = 2 * sign(x) + sign(y). */
61*412f47f9SXin Li uint32_t m = ((iy >> 31) & 1) | ((ix >> 30) & 2);
62*412f47f9SXin Li
63*412f47f9SXin Li /* The following follows glibc ieee754 implementation, except
64*412f47f9SXin Li that we do not use +-tiny shifts (non-nearest rounding mode). */
65*412f47f9SXin Li
66*412f47f9SXin Li int32_t exp_diff = biased_exponent (x) - biased_exponent (y);
67*412f47f9SXin Li
68*412f47f9SXin Li /* Special case for (x, y) either on or very close to the x axis. Either y =
69*412f47f9SXin Li 0, or y is tiny and x is huge (difference in exponents >=
70*412f47f9SXin Li POLY_UFLOW_BOUND). In the second case, we only want to use this special
71*412f47f9SXin Li case when x is negative (i.e. quadrants 2 or 3). */
72*412f47f9SXin Li if (unlikely (iay == 0 || (exp_diff >= POLY_UFLOW_BOUND && m >= 2)))
73*412f47f9SXin Li {
74*412f47f9SXin Li switch (m)
75*412f47f9SXin Li {
76*412f47f9SXin Li case 0:
77*412f47f9SXin Li case 1:
78*412f47f9SXin Li return y; /* atan(+-0,+anything)=+-0. */
79*412f47f9SXin Li case 2:
80*412f47f9SXin Li return Pi; /* atan(+0,-anything) = pi. */
81*412f47f9SXin Li case 3:
82*412f47f9SXin Li return -Pi; /* atan(-0,-anything) =-pi. */
83*412f47f9SXin Li }
84*412f47f9SXin Li }
85*412f47f9SXin Li /* Special case for (x, y) either on or very close to the y axis. Either x =
86*412f47f9SXin Li 0, or x is tiny and y is huge (difference in exponents >=
87*412f47f9SXin Li POLY_UFLOW_BOUND). */
88*412f47f9SXin Li if (unlikely (iax == 0 || exp_diff <= -POLY_UFLOW_BOUND))
89*412f47f9SXin Li return sign_y ? -PiOver2 : PiOver2;
90*412f47f9SXin Li
91*412f47f9SXin Li /* x is INF. */
92*412f47f9SXin Li if (iax == 0x7f800000)
93*412f47f9SXin Li {
94*412f47f9SXin Li if (iay == 0x7f800000)
95*412f47f9SXin Li {
96*412f47f9SXin Li switch (m)
97*412f47f9SXin Li {
98*412f47f9SXin Li case 0:
99*412f47f9SXin Li return PiOver4; /* atan(+INF,+INF). */
100*412f47f9SXin Li case 1:
101*412f47f9SXin Li return -PiOver4; /* atan(-INF,+INF). */
102*412f47f9SXin Li case 2:
103*412f47f9SXin Li return 3.0f * PiOver4; /* atan(+INF,-INF). */
104*412f47f9SXin Li case 3:
105*412f47f9SXin Li return -3.0f * PiOver4; /* atan(-INF,-INF). */
106*412f47f9SXin Li }
107*412f47f9SXin Li }
108*412f47f9SXin Li else
109*412f47f9SXin Li {
110*412f47f9SXin Li switch (m)
111*412f47f9SXin Li {
112*412f47f9SXin Li case 0:
113*412f47f9SXin Li return 0.0f; /* atan(+...,+INF). */
114*412f47f9SXin Li case 1:
115*412f47f9SXin Li return -0.0f; /* atan(-...,+INF). */
116*412f47f9SXin Li case 2:
117*412f47f9SXin Li return Pi; /* atan(+...,-INF). */
118*412f47f9SXin Li case 3:
119*412f47f9SXin Li return -Pi; /* atan(-...,-INF). */
120*412f47f9SXin Li }
121*412f47f9SXin Li }
122*412f47f9SXin Li }
123*412f47f9SXin Li /* y is INF. */
124*412f47f9SXin Li if (iay == 0x7f800000)
125*412f47f9SXin Li return sign_y ? -PiOver2 : PiOver2;
126*412f47f9SXin Li
127*412f47f9SXin Li uint32_t sign_xy = sign_x ^ sign_y;
128*412f47f9SXin Li
129*412f47f9SXin Li float ax = asfloat (iax);
130*412f47f9SXin Li float ay = asfloat (iay);
131*412f47f9SXin Li
132*412f47f9SXin Li bool pred_aygtax = (ay > ax);
133*412f47f9SXin Li
134*412f47f9SXin Li /* Set up z for call to atanf. */
135*412f47f9SXin Li float n = pred_aygtax ? -ax : ay;
136*412f47f9SXin Li float d = pred_aygtax ? ay : ax;
137*412f47f9SXin Li float z = n / d;
138*412f47f9SXin Li
139*412f47f9SXin Li float ret;
140*412f47f9SXin Li if (unlikely (m < 2 && exp_diff >= POLY_UFLOW_BOUND))
141*412f47f9SXin Li {
142*412f47f9SXin Li /* If (x, y) is very close to x axis and x is positive, the polynomial
143*412f47f9SXin Li will underflow and evaluate to z. */
144*412f47f9SXin Li ret = z;
145*412f47f9SXin Li }
146*412f47f9SXin Li else
147*412f47f9SXin Li {
148*412f47f9SXin Li /* Work out the correct shift. */
149*412f47f9SXin Li float shift = sign_x ? -2.0f : 0.0f;
150*412f47f9SXin Li shift = pred_aygtax ? shift + 1.0f : shift;
151*412f47f9SXin Li shift *= PiOver2;
152*412f47f9SXin Li
153*412f47f9SXin Li ret = eval_poly (z, z, shift);
154*412f47f9SXin Li }
155*412f47f9SXin Li
156*412f47f9SXin Li /* Account for the sign of x and y. */
157*412f47f9SXin Li return asfloat (asuint (ret) ^ sign_xy);
158*412f47f9SXin Li }
159*412f47f9SXin Li
160*412f47f9SXin Li /* Arity of 2 means no mathbench entry emitted. See test/mathbench_funcs.h. */
161*412f47f9SXin Li PL_SIG (S, F, 2, atan2)
162*412f47f9SXin Li PL_TEST_ULP (atan2f, 2.4)
163*412f47f9SXin Li PL_TEST_INTERVAL (atan2f, -10.0, 10.0, 50000)
164*412f47f9SXin Li PL_TEST_INTERVAL (atan2f, -1.0, 1.0, 40000)
165*412f47f9SXin Li PL_TEST_INTERVAL (atan2f, 0.0, 1.0, 40000)
166*412f47f9SXin Li PL_TEST_INTERVAL (atan2f, 1.0, 100.0, 40000)
167*412f47f9SXin Li PL_TEST_INTERVAL (atan2f, 1e6, 1e32, 40000)
168