xref: /aosp_15_r20/external/arm-optimized-routines/math/tools/v_log.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial used for __v_log(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 6; // poly degree
7*412f47f9SXin Lia = -0x1.fc1p-9;
8*412f47f9SXin Lib = 0x1.009p-8;
9*412f47f9SXin Li
10*412f47f9SXin Li// find log(1+x)/x polynomial with minimal relative error
11*412f47f9SXin Li// (minimal relative error polynomial for log(1+x) is the same * x)
12*412f47f9SXin Lideg = deg-1; // because of /x
13*412f47f9SXin Li
14*412f47f9SXin Li// f = log(1+x)/x; using taylor series
15*412f47f9SXin Lif = 0;
16*412f47f9SXin Lifor i from 0 to 60 do { f = f + (-x)^i/(i+1); };
17*412f47f9SXin Li
18*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
19*412f47f9SXin Liapprox = proc(poly,d) {
20*412f47f9SXin Li  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
21*412f47f9SXin Li};
22*412f47f9SXin Li
23*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
24*412f47f9SXin Lipoly = 1;
25*412f47f9SXin Lifor i from 1 to deg do {
26*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
27*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
28*412f47f9SXin Li};
29*412f47f9SXin Li
30*412f47f9SXin Lidisplay = hexadecimal;
31*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
32*412f47f9SXin Liprint("in [",a,b,"]");
33*412f47f9SXin Liprint("coeffs:");
34*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
35