xref: /aosp_15_r20/external/arm-optimized-routines/math/tools/sin.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating sin(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 7;   // polynomial degree
7*412f47f9SXin Lia = -pi/4; // interval
8*412f47f9SXin Lib = pi/4;
9*412f47f9SXin Li
10*412f47f9SXin Li// find even polynomial with minimal abs error compared to sin(x)/x
11*412f47f9SXin Li
12*412f47f9SXin Li// account for /x
13*412f47f9SXin Lideg = deg-1;
14*412f47f9SXin Li
15*412f47f9SXin Li// f = sin(x)/x;
16*412f47f9SXin Lif = 1;
17*412f47f9SXin Lic = 1;
18*412f47f9SXin Lifor i from 1 to 60 do { c = 2*i*(2*i + 1)*c; f = f + (-1)^i*x^(2*i)/c; };
19*412f47f9SXin Li
20*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
21*412f47f9SXin Liapprox = proc(poly,d) {
22*412f47f9SXin Li  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
23*412f47f9SXin Li};
24*412f47f9SXin Li
25*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
26*412f47f9SXin Lipoly = 1;
27*412f47f9SXin Lifor i from 1 to deg/2 do {
28*412f47f9SXin Li  p = roundcoefficients(approx(poly,2*i), [|D ...|]);
29*412f47f9SXin Li  poly = poly + x^(2*i)*coeff(p,0);
30*412f47f9SXin Li};
31*412f47f9SXin Li
32*412f47f9SXin Lidisplay = hexadecimal;
33*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
34*412f47f9SXin Liprint("abs error:", accurateinfnorm(sin(x)-x*poly(x), [a;b], 30));
35*412f47f9SXin Liprint("in [",a,b,"]");
36*412f47f9SXin Liprint("coeffs:");
37*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
38