xref: /aosp_15_r20/external/arm-optimized-routines/math/tools/log_abs.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating log(1+x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 6; // poly degree
7*412f47f9SXin Li// interval ~= 1/(2*N), where N is the table entries
8*412f47f9SXin Lia = -0x1.fp-9;
9*412f47f9SXin Lib =  0x1.fp-9;
10*412f47f9SXin Li
11*412f47f9SXin Li// find log(1+x) polynomial with minimal absolute error
12*412f47f9SXin Lif = log(1+x);
13*412f47f9SXin Li
14*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
15*412f47f9SXin Liapprox = proc(poly,d) {
16*412f47f9SXin Li  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
17*412f47f9SXin Li};
18*412f47f9SXin Li
19*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
20*412f47f9SXin Lipoly = x;
21*412f47f9SXin Lifor i from 2 to deg do {
22*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
23*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
24*412f47f9SXin Li};
25*412f47f9SXin Li
26*412f47f9SXin Lidisplay = hexadecimal;
27*412f47f9SXin Liprint("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
28*412f47f9SXin Li// relative error computation fails if f(0)==0
29*412f47f9SXin Li// g = f(x)/x = log(1+x)/x; using taylor series
30*412f47f9SXin Lig = 0;
31*412f47f9SXin Lifor i from 0 to 60 do { g = g + (-x)^i/(i+1); };
32*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/x/g(x), [a;b], 30));
33*412f47f9SXin Liprint("in [",a,b,"]");
34*412f47f9SXin Liprint("coeffs:");
35*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
36