xref: /aosp_15_r20/external/arm-optimized-routines/math/tools/log2_abs.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating log2(1+x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 7; // poly degree
7*412f47f9SXin Li// interval ~= 1/(2*N), where N is the table entries
8*412f47f9SXin Lia= -0x1.f45p-8;
9*412f47f9SXin Lib=  0x1.f45p-8;
10*412f47f9SXin Li
11*412f47f9SXin Liln2 = evaluate(log(2),0);
12*412f47f9SXin Liinvln2hi = double(1/ln2 + 0x1p21) - 0x1p21; // round away last 21 bits
13*412f47f9SXin Liinvln2lo = double(1/ln2 - invln2hi);
14*412f47f9SXin Li
15*412f47f9SXin Li// find log2(1+x) polynomial with minimal absolute error
16*412f47f9SXin Lif = log(1+x)/ln2;
17*412f47f9SXin Li
18*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
19*412f47f9SXin Liapprox = proc(poly,d) {
20*412f47f9SXin Li  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
21*412f47f9SXin Li};
22*412f47f9SXin Li
23*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
24*412f47f9SXin Lipoly = x*(invln2lo + invln2hi);
25*412f47f9SXin Lifor i from 2 to deg do {
26*412f47f9SXin Li  p = roundcoefficients(approx(poly,i), [|D ...|]);
27*412f47f9SXin Li  poly = poly + x^i*coeff(p,0);
28*412f47f9SXin Li};
29*412f47f9SXin Li
30*412f47f9SXin Lidisplay = hexadecimal;
31*412f47f9SXin Liprint("invln2hi:", invln2hi);
32*412f47f9SXin Liprint("invln2lo:", invln2lo);
33*412f47f9SXin Liprint("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
34*412f47f9SXin Li//// relative error computation fails if f(0)==0
35*412f47f9SXin Li//// g = f(x)/x = log2(1+x)/x; using taylor series
36*412f47f9SXin Li//g = 0;
37*412f47f9SXin Li//for i from 0 to 60 do { g = g + (-x)^i/(i+1)/ln2; };
38*412f47f9SXin Li//print("rel error:", accurateinfnorm(1-(poly(x)/x)/g(x), [a;b], 30));
39*412f47f9SXin Liprint("in [",a,b,"]");
40*412f47f9SXin Liprint("coeffs:");
41*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
42