xref: /aosp_15_r20/external/arm-optimized-routines/math/tools/cos.sollya (revision 412f47f9e737e10ed5cc46ec6a8d7fa2264f8a14)
1*412f47f9SXin Li// polynomial for approximating cos(x)
2*412f47f9SXin Li//
3*412f47f9SXin Li// Copyright (c) 2019, Arm Limited.
4*412f47f9SXin Li// SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
5*412f47f9SXin Li
6*412f47f9SXin Lideg = 8;   // polynomial degree
7*412f47f9SXin Lia = -pi/4; // interval
8*412f47f9SXin Lib = pi/4;
9*412f47f9SXin Li
10*412f47f9SXin Li// find even polynomial with minimal abs error compared to cos(x)
11*412f47f9SXin Li
12*412f47f9SXin Lif = cos(x);
13*412f47f9SXin Li
14*412f47f9SXin Li// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
15*412f47f9SXin Liapprox = proc(poly,d) {
16*412f47f9SXin Li  return remez(f(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
17*412f47f9SXin Li};
18*412f47f9SXin Li
19*412f47f9SXin Li// first coeff is fixed, iteratively find optimal double prec coeffs
20*412f47f9SXin Lipoly = 1;
21*412f47f9SXin Lifor i from 1 to deg/2 do {
22*412f47f9SXin Li  p = roundcoefficients(approx(poly,2*i), [|D ...|]);
23*412f47f9SXin Li  poly = poly + x^(2*i)*coeff(p,0);
24*412f47f9SXin Li};
25*412f47f9SXin Li
26*412f47f9SXin Lidisplay = hexadecimal;
27*412f47f9SXin Liprint("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30));
28*412f47f9SXin Liprint("abs error:", accurateinfnorm(f(x)-poly(x), [a;b], 30));
29*412f47f9SXin Liprint("in [",a,b,"]");
30*412f47f9SXin Liprint("coeffs:");
31*412f47f9SXin Lifor i from 0 to deg do coeff(poly,i);
32