1// Copyright 2017 The Abseil Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14// 15// Produce stack trace 16 17#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 18#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 19 20#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) 21#include <ucontext.h> // for ucontext_t 22#endif 23 24#if !defined(_WIN32) 25#include <unistd.h> 26#endif 27 28#include <cassert> 29#include <cstdint> 30#include <limits> 31 32#include "absl/base/attributes.h" 33#include "absl/base/macros.h" 34#include "absl/base/port.h" 35#include "absl/debugging/internal/address_is_readable.h" 36#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems 37#include "absl/debugging/stacktrace.h" 38 39using absl::debugging_internal::AddressIsReadable; 40 41#if defined(__linux__) && defined(__i386__) 42// Count "push %reg" instructions in VDSO __kernel_vsyscall(), 43// preceding "syscall" or "sysenter". 44// If __kernel_vsyscall uses frame pointer, answer 0. 45// 46// kMaxBytes tells how many instruction bytes of __kernel_vsyscall 47// to analyze before giving up. Up to kMaxBytes+1 bytes of 48// instructions could be accessed. 49// 50// Here are known __kernel_vsyscall instruction sequences: 51// 52// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). 53// Used on Intel. 54// 0xffffe400 <__kernel_vsyscall+0>: push %ecx 55// 0xffffe401 <__kernel_vsyscall+1>: push %edx 56// 0xffffe402 <__kernel_vsyscall+2>: push %ebp 57// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp 58// 0xffffe405 <__kernel_vsyscall+5>: sysenter 59// 60// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). 61// Used on AMD. 62// 0xffffe400 <__kernel_vsyscall+0>: push %ebp 63// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp 64// 0xffffe403 <__kernel_vsyscall+3>: syscall 65// 66 67// The sequence below isn't actually expected in Google fleet, 68// here only for completeness. Remove this comment from OSS release. 69 70// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) 71// 0xffffe400 <__kernel_vsyscall+0>: int $0x80 72// 0xffffe401 <__kernel_vsyscall+1>: ret 73// 74static const int kMaxBytes = 10; 75 76// We use assert()s instead of DCHECK()s -- this is too low level 77// for DCHECK(). 78 79static int CountPushInstructions(const unsigned char *const addr) { 80 int result = 0; 81 for (int i = 0; i < kMaxBytes; ++i) { 82 if (addr[i] == 0x89) { 83 // "mov reg,reg" 84 if (addr[i + 1] == 0xE5) { 85 // Found "mov %esp,%ebp". 86 return 0; 87 } 88 ++i; // Skip register encoding byte. 89 } else if (addr[i] == 0x0F && 90 (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { 91 // Found "sysenter" or "syscall". 92 return result; 93 } else if ((addr[i] & 0xF0) == 0x50) { 94 // Found "push %reg". 95 ++result; 96 } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { 97 // Found "int $0x80" 98 assert(result == 0); 99 return 0; 100 } else { 101 // Unexpected instruction. 102 assert(false && "unexpected instruction in __kernel_vsyscall"); 103 return 0; 104 } 105 } 106 // Unexpected: didn't find SYSENTER or SYSCALL in 107 // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. 108 assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); 109 return 0; 110} 111#endif 112 113// Assume stack frames larger than 100,000 bytes are bogus. 114static const int kMaxFrameBytes = 100000; 115// Stack end to use when we don't know the actual stack end 116// (effectively just the end of address space). 117constexpr uintptr_t kUnknownStackEnd = 118 std::numeric_limits<size_t>::max() - sizeof(void *); 119 120// Returns the stack frame pointer from signal context, 0 if unknown. 121// vuc is a ucontext_t *. We use void* to avoid the use 122// of ucontext_t on non-POSIX systems. 123static uintptr_t GetFP(const void *vuc) { 124#if !defined(__linux__) 125 static_cast<void>(vuc); // Avoid an unused argument compiler warning. 126#else 127 if (vuc != nullptr) { 128 auto *uc = reinterpret_cast<const ucontext_t *>(vuc); 129#if defined(__i386__) 130 const auto bp = uc->uc_mcontext.gregs[REG_EBP]; 131 const auto sp = uc->uc_mcontext.gregs[REG_ESP]; 132#elif defined(__x86_64__) 133 const auto bp = uc->uc_mcontext.gregs[REG_RBP]; 134 const auto sp = uc->uc_mcontext.gregs[REG_RSP]; 135#else 136 const uintptr_t bp = 0; 137 const uintptr_t sp = 0; 138#endif 139 // Sanity-check that the base pointer is valid. It's possible that some 140 // code in the process is compiled with --copt=-fomit-frame-pointer or 141 // --copt=-momit-leaf-frame-pointer. 142 // 143 // TODO(bcmills): -momit-leaf-frame-pointer is currently the default 144 // behavior when building with clang. Talk to the C++ toolchain team about 145 // fixing that. 146 if (bp >= sp && bp - sp <= kMaxFrameBytes) 147 return static_cast<uintptr_t>(bp); 148 149 // If bp isn't a plausible frame pointer, return the stack pointer instead. 150 // If we're lucky, it points to the start of a stack frame; otherwise, we'll 151 // get one frame of garbage in the stack trace and fail the sanity check on 152 // the next iteration. 153 return static_cast<uintptr_t>(sp); 154 } 155#endif 156 return 0; 157} 158 159// Given a pointer to a stack frame, locate and return the calling 160// stackframe, or return null if no stackframe can be found. Perform sanity 161// checks (the strictness of which is controlled by the boolean parameter 162// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. 163template <bool STRICT_UNWINDING, bool WITH_CONTEXT> 164ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 165ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 166static void **NextStackFrame(void **old_fp, const void *uc, 167 size_t stack_low, size_t stack_high) { 168 void **new_fp = (void **)*old_fp; 169 170#if defined(__linux__) && defined(__i386__) 171 if (WITH_CONTEXT && uc != nullptr) { 172 // How many "push %reg" instructions are there at __kernel_vsyscall? 173 // This is constant for a given kernel and processor, so compute 174 // it only once. 175 static int num_push_instructions = -1; // Sentinel: not computed yet. 176 // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly 177 // be there. 178 static const unsigned char *kernel_rt_sigreturn_address = nullptr; 179 static const unsigned char *kernel_vsyscall_address = nullptr; 180 if (num_push_instructions == -1) { 181#ifdef ABSL_HAVE_VDSO_SUPPORT 182 absl::debugging_internal::VDSOSupport vdso; 183 if (vdso.IsPresent()) { 184 absl::debugging_internal::VDSOSupport::SymbolInfo 185 rt_sigreturn_symbol_info; 186 absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; 187 if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, 188 &rt_sigreturn_symbol_info) || 189 !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, 190 &vsyscall_symbol_info) || 191 rt_sigreturn_symbol_info.address == nullptr || 192 vsyscall_symbol_info.address == nullptr) { 193 // Unexpected: 32-bit VDSO is present, yet one of the expected 194 // symbols is missing or null. 195 assert(false && "VDSO is present, but doesn't have expected symbols"); 196 num_push_instructions = 0; 197 } else { 198 kernel_rt_sigreturn_address = 199 reinterpret_cast<const unsigned char *>( 200 rt_sigreturn_symbol_info.address); 201 kernel_vsyscall_address = 202 reinterpret_cast<const unsigned char *>( 203 vsyscall_symbol_info.address); 204 num_push_instructions = 205 CountPushInstructions(kernel_vsyscall_address); 206 } 207 } else { 208 num_push_instructions = 0; 209 } 210#else // ABSL_HAVE_VDSO_SUPPORT 211 num_push_instructions = 0; 212#endif // ABSL_HAVE_VDSO_SUPPORT 213 } 214 if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && 215 old_fp[1] == kernel_rt_sigreturn_address) { 216 const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); 217 // This kernel does not use frame pointer in its VDSO code, 218 // and so %ebp is not suitable for unwinding. 219 void **const reg_ebp = 220 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); 221 const unsigned char *const reg_eip = 222 reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); 223 if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && 224 reg_eip - kernel_vsyscall_address < kMaxBytes) { 225 // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. 226 // Restore from 'ucv' instead. 227 void **const reg_esp = 228 reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); 229 // Check that alleged %esp is not null and is reasonably aligned. 230 if (reg_esp && 231 ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { 232 // Check that alleged %esp is actually readable. This is to prevent 233 // "double fault" in case we hit the first fault due to e.g. stack 234 // corruption. 235 void *const reg_esp2 = reg_esp[num_push_instructions - 1]; 236 if (AddressIsReadable(reg_esp2)) { 237 // Alleged %esp is readable, use it for further unwinding. 238 new_fp = reinterpret_cast<void **>(reg_esp2); 239 } 240 } 241 } 242 } 243 } 244#endif 245 246 const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); 247 const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); 248 249 // Check that the transition from frame pointer old_fp to frame 250 // pointer new_fp isn't clearly bogus. Skip the checks if new_fp 251 // matches the signal context, so that we don't skip out early when 252 // using an alternate signal stack. 253 // 254 // TODO(bcmills): The GetFP call should be completely unnecessary when 255 // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's 256 // stack by this point), but it is empirically still needed (e.g. when the 257 // stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some 258 // frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what 259 // it's supposed to. 260 if (STRICT_UNWINDING && 261 (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { 262 // With the stack growing downwards, older stack frame must be 263 // at a greater address that the current one. 264 if (new_fp_u <= old_fp_u) return nullptr; 265 266 // If we get a very large frame size, it may be an indication that we 267 // guessed frame pointers incorrectly and now risk a paging fault 268 // dereferencing a wrong frame pointer. Or maybe not because large frames 269 // are possible as well. The main stack is assumed to be readable, 270 // so we assume the large frame is legit if we know the real stack bounds 271 // and are within the stack. 272 if (new_fp_u - old_fp_u > kMaxFrameBytes) { 273 if (stack_high < kUnknownStackEnd && 274 static_cast<size_t>(getpagesize()) < stack_low) { 275 // Stack bounds are known. 276 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { 277 // new_fp_u is not within the known stack. 278 return nullptr; 279 } 280 } else { 281 // Stack bounds are unknown, prefer truncated stack to possible crash. 282 return nullptr; 283 } 284 } 285 if (stack_low < old_fp_u && old_fp_u <= stack_high) { 286 // Old BP was in the expected stack region... 287 if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { 288 // ... but new BP is outside of expected stack region. 289 // It is most likely bogus. 290 return nullptr; 291 } 292 } else { 293 // We may be here if we are executing in a co-routine with a 294 // separate stack. We can't do safety checks in this case. 295 } 296 } else { 297 if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below 298 // In the non-strict mode, allow discontiguous stack frames. 299 // (alternate-signal-stacks for example). 300 if (new_fp == old_fp) return nullptr; 301 } 302 303 if (new_fp_u & (sizeof(void *) - 1)) return nullptr; 304#ifdef __i386__ 305 // On 32-bit machines, the stack pointer can be very close to 306 // 0xffffffff, so we explicitly check for a pointer into the 307 // last two pages in the address space 308 if (new_fp_u >= 0xffffe000) return nullptr; 309#endif 310#if !defined(_WIN32) 311 if (!STRICT_UNWINDING) { 312 // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test 313 // on AMD-based machines with VDSO-enabled kernels. 314 // Make an extra sanity check to insure new_fp is readable. 315 // Note: NextStackFrame<false>() is only called while the program 316 // is already on its last leg, so it's ok to be slow here. 317 318 if (!AddressIsReadable(new_fp)) { 319 return nullptr; 320 } 321 } 322#endif 323 return new_fp; 324} 325 326template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> 327ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. 328ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. 329ABSL_ATTRIBUTE_NOINLINE 330static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, 331 const void *ucp, int *min_dropped_frames) { 332 int n = 0; 333 void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); 334 335 // Assume that the first page is not stack. 336 size_t stack_low = static_cast<size_t>(getpagesize()); 337 size_t stack_high = kUnknownStackEnd; 338 339 while (fp && n < max_depth) { 340 if (*(fp + 1) == reinterpret_cast<void *>(0)) { 341 // In 64-bit code, we often see a frame that 342 // points to itself and has a return address of 0. 343 break; 344 } 345 void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( 346 fp, ucp, stack_low, stack_high); 347 if (skip_count > 0) { 348 skip_count--; 349 } else { 350 result[n] = *(fp + 1); 351 if (IS_STACK_FRAMES) { 352 if (next_fp > fp) { 353 sizes[n] = static_cast<int>( 354 reinterpret_cast<uintptr_t>(next_fp) - 355 reinterpret_cast<uintptr_t>(fp)); 356 } else { 357 // A frame-size of 0 is used to indicate unknown frame size. 358 sizes[n] = 0; 359 } 360 } 361 n++; 362 } 363 fp = next_fp; 364 } 365 if (min_dropped_frames != nullptr) { 366 // Implementation detail: we clamp the max of frames we are willing to 367 // count, so as not to spend too much time in the loop below. 368 const int kMaxUnwind = 1000; 369 int num_dropped_frames = 0; 370 for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { 371 if (skip_count > 0) { 372 skip_count--; 373 } else { 374 num_dropped_frames++; 375 } 376 fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low, 377 stack_high); 378 } 379 *min_dropped_frames = num_dropped_frames; 380 } 381 return n; 382} 383 384namespace absl { 385ABSL_NAMESPACE_BEGIN 386namespace debugging_internal { 387bool StackTraceWorksForTest() { 388 return true; 389} 390} // namespace debugging_internal 391ABSL_NAMESPACE_END 392} // namespace absl 393 394#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ 395