xref: /aosp_15_r20/external/XNNPACK/src/f32-qs8-vcvt/wasmsimd-magic.c.in (revision 4bdc94577ba0e567308109d787f7fec7b531ce36)
1// Copyright 2021 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert BATCH_TILE % 8 == 0
7$assert BATCH_TILE >= 8
8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
9#include <assert.h>
10
11#include <arm_neon.h>
12
13#include <xnnpack/common.h>
14#include <xnnpack/intrinsics-polyfill.h>
15#include <xnnpack/vcvt.h>
16
17
18$XINT8_T = {"QS8": "int8_t", "QU8": "uint8_t"}[DATATYPE]
19$WASM_X8X16_NARROW_I16X8 = {"QS8": "wasm_i8x16_narrow_i16x8", "QU8": "wasm_u8x16_narrow_i16x8"}[DATATYPE]
20$WASM_X8X16_MIN = {"QS8": "wasm_i8x16_min", "QU8": "wasm_u8x16_min"}[DATATYPE]
21void xnn_f32_${DATATYPE.lower()}_vcvt_ukernel__wasmsimd_magic_x${BATCH_TILE}(
22    size_t n,
23    const float* x,
24    ${XINT8_T}* y,
25    const union xnn_f32_${DATATYPE.lower()}_cvt_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
26{
27  assert(n != 0);
28  assert(n % sizeof(float) == 0);
29  assert(x != NULL);
30  assert(y != NULL);
31
32  const v128_t vscale = wasm_v128_load64_splat(params->wasmsimd_magic.scale);
33  const v128_t vmagic_bias = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias);
34  const v128_t vmagic_min = wasm_v128_load64_splat(params->wasmsimd_magic.magic_min);
35  const v128_t vmagic_bias_less_zero_point = wasm_v128_load64_splat(params->wasmsimd_magic.magic_bias_less_zero_point);
36  const v128_t voutput_max = wasm_v128_load64_splat(params->wasmsimd_magic.output_max);
37  $if BATCH_TILE > 8:
38    for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
39      v128_t vx${ABC[0:4]} = wasm_v128_load(x);
40      $for N in range(4, BATCH_TILE, 4):
41        v128_t vx${ABC[N:N+4]} = wasm_v128_load(x + ${N});
42      x += ${BATCH_TILE};
43
44      $for N in range(0, BATCH_TILE, 4):
45        vx${ABC[N:N+4]} = wasm_f32x4_mul(vx${ABC[N:N+4]}, vscale);
46
47      $for N in range(0, BATCH_TILE, 4):
48        vx${ABC[N:N+4]} = wasm_f32x4_add(vx${ABC[N:N+4]}, vmagic_bias);
49
50      $for N in range(0, BATCH_TILE, 4):
51        v128_t vacc${ABC[N:N+4]} = wasm_i32x4_max(vx${ABC[N:N+4]}, vmagic_min);
52
53      $for N in range(0, BATCH_TILE, 4):
54        vacc${ABC[N:N+4]} = wasm_i32x4_sub(vacc${ABC[N:N+4]}, vmagic_bias_less_zero_point);
55
56      $for N in range(0, BATCH_TILE, 8):
57        const v128_t vacc${ABC[N:N+8]} = wasm_i16x8_narrow_i32x4(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]});
58
59      $for N in range(0, BATCH_TILE, 16):
60        $if N + 8 < BATCH_TILE:
61          v128_t vy${ABC[N:N+16]} = ${WASM_X8X16_NARROW_I16X8}(vacc${ABC[N:N+8]}, vacc${ABC[N+8:N+16]});
62        $else:
63          v128_t vy${ABC[N:N+8]} = ${WASM_X8X16_NARROW_I16X8}(vacc${ABC[N:N+8]}, vacc${ABC[N:N+8]});
64
65      $for N in range(0, BATCH_TILE, 16):
66        $if N + 8 < BATCH_TILE:
67          vy${ABC[N:N+16]} = ${WASM_X8X16_MIN}(vy${ABC[N:N+16]}, voutput_max);
68        $else:
69          vy${ABC[N:N+8]} = ${WASM_X8X16_MIN}(vy${ABC[N:N+8]}, voutput_max);
70
71      wasm_v128_store(y, vy${ABC[0:16]});
72      $for N in range(16, BATCH_TILE, 16):
73        $if N + 8 < BATCH_TILE:
74          wasm_v128_store(y + ${N}, vy${ABC[N:N+16]});
75        $else:
76          *((double*) (y + ${N})) = wasm_f64x2_extract_lane(vy${ABC[N:N+8]}, 0);
77      y += ${BATCH_TILE};
78    }
79  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
80    v128_t vx_lo = wasm_v128_load(x);
81    v128_t vx_hi = wasm_v128_load(x + 4);
82    x += 8;
83
84    vx_lo = wasm_f32x4_mul(vx_lo, vscale);
85    vx_hi = wasm_f32x4_mul(vx_hi, vscale);
86
87    vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias);
88    vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias);
89
90    v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min);
91    v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min);
92
93    vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point);
94    vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point);
95
96    const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi);
97
98    v128_t vy = ${WASM_X8X16_NARROW_I16X8}(vacc, vacc);
99    vy = ${WASM_X8X16_MIN}(vy, voutput_max);
100    *((double*) y) = wasm_f64x2_extract_lane(vy, 0);
101    y += 8;
102  }
103  if XNN_UNLIKELY(n != 0) {
104    assert(n >= 1 * sizeof(float));
105    assert(n <= 7 * sizeof(float));
106    v128_t vx_lo = wasm_v128_load(x);
107    const float* x_hi = (const float*) ((uintptr_t) x + (n & (4 * sizeof(float))));
108    v128_t vx_hi = wasm_v128_load(x_hi);
109
110    vx_lo = wasm_f32x4_mul(vx_lo, vscale);
111    vx_hi = wasm_f32x4_mul(vx_hi, vscale);
112
113    vx_lo = wasm_f32x4_add(vx_lo, vmagic_bias);
114    vx_hi = wasm_f32x4_add(vx_hi, vmagic_bias);
115
116    v128_t vacc_lo = wasm_i32x4_max(vx_lo, vmagic_min);
117    v128_t vacc_hi = wasm_i32x4_max(vx_hi, vmagic_min);
118
119    vacc_lo = wasm_i32x4_sub(vacc_lo, vmagic_bias_less_zero_point);
120    vacc_hi = wasm_i32x4_sub(vacc_hi, vmagic_bias_less_zero_point);
121
122    const v128_t vacc = wasm_i16x8_narrow_i32x4(vacc_lo, vacc_hi);
123
124    v128_t vy = ${WASM_X8X16_NARROW_I16X8}(vacc, vacc);
125    vy = ${WASM_X8X16_MIN}(vy, voutput_max);
126
127    if (n & (4 * sizeof(float))) {
128      *((float*) y) = wasm_f32x4_extract_lane(vy, 0);
129      y += 4;
130      vy = wasm_u64x2_shr(vy, 32);
131    }
132    uint32_t vy_lo = (uint32_t) wasm_i32x4_extract_lane(vy, 0);
133    if (n & (2 * sizeof(float))) {
134      *((uint16_t*) y) = (uint16_t) vy_lo;
135      y += 2;
136      vy_lo >>= 16;
137    }
138    if (n & (1 * sizeof(float))) {
139      *y = (${XINT8_T}) vy_lo;
140    }
141  }
142}
143