xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/PriorBoxLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "PriorBoxLayer.h"
25 
26 #include "ActivationLayer.h"
27 
28 #include "tests/validation/Helpers.h"
29 
30 namespace arm_compute
31 {
32 namespace test
33 {
34 namespace validation
35 {
36 namespace reference
37 {
38 template <typename T>
prior_box_layer(const SimpleTensor<T> & src1,const SimpleTensor<T> & src2,const PriorBoxLayerInfo & info,const TensorShape & output_shape)39 SimpleTensor<T> prior_box_layer(const SimpleTensor<T> &src1, const SimpleTensor<T> &src2, const PriorBoxLayerInfo &info, const TensorShape &output_shape)
40 {
41     const auto layer_width  = static_cast<int>(src1.shape()[0]);
42     const auto layer_height = static_cast<int>(src1.shape()[1]);
43 
44     int img_width  = info.img_size().x;
45     int img_height = info.img_size().y;
46     if(img_width == 0 || img_height == 0)
47     {
48         img_width  = static_cast<int>(src2.shape()[0]);
49         img_height = static_cast<int>(src2.shape()[1]);
50     }
51 
52     float step_x = info.steps()[0];
53     float step_y = info.steps()[1];
54     if(step_x == 0.f || step_y == 0.f)
55     {
56         step_x = static_cast<float>(img_width) / layer_width;
57         step_x = static_cast<float>(img_height) / layer_height;
58     }
59 
60     // Calculate number of aspect ratios
61     const int num_priors     = info.aspect_ratios().size() * info.min_sizes().size() + info.max_sizes().size();
62     const int total_elements = layer_width * layer_height * num_priors * 4;
63 
64     SimpleTensor<T> result(output_shape, src1.data_type());
65 
66     int idx = 0;
67     for(int y = 0; y < layer_height; ++y)
68     {
69         for(int x = 0; x < layer_width; ++x)
70         {
71             const float center_x = (x + info.offset()) * step_x;
72             const float center_y = (y + info.offset()) * step_y;
73             float       box_width;
74             float       box_height;
75             for(unsigned int i = 0; i < info.min_sizes().size(); ++i)
76             {
77                 const float min_size = info.min_sizes().at(i);
78                 box_width            = min_size;
79                 box_height           = min_size;
80                 // (xmin, ymin, xmax, ymax)
81                 result[idx++] = (center_x - box_width / 2.f) / img_width;
82                 result[idx++] = (center_y - box_height / 2.f) / img_height;
83                 result[idx++] = (center_x + box_width / 2.f) / img_width;
84                 result[idx++] = (center_y + box_height / 2.f) / img_height;
85 
86                 if(!info.max_sizes().empty())
87                 {
88                     const float max_size = info.max_sizes().at(i);
89                     box_width            = sqrt(min_size * max_size);
90                     box_height           = box_width;
91 
92                     // (xmin, ymin, xmax, ymax)
93                     result[idx++] = (center_x - box_width / 2.f) / img_width;
94                     result[idx++] = (center_y - box_height / 2.f) / img_height;
95                     result[idx++] = (center_x + box_width / 2.f) / img_width;
96                     result[idx++] = (center_y + box_height / 2.f) / img_height;
97                 }
98 
99                 // rest of priors
100                 for(auto ar : info.aspect_ratios())
101                 {
102                     if(fabs(ar - 1.) < 1e-6)
103                     {
104                         continue;
105                     }
106 
107                     box_width  = min_size * sqrt(ar);
108                     box_height = min_size / sqrt(ar);
109 
110                     // (xmin, ymin, xmax, ymax)
111                     result[idx++] = (center_x - box_width / 2.f) / img_width;
112                     result[idx++] = (center_y - box_height / 2.f) / img_height;
113                     result[idx++] = (center_x + box_width / 2.f) / img_width;
114                     result[idx++] = (center_y + box_height / 2.f) / img_height;
115                 }
116             }
117         }
118     }
119 
120     // clip the coordinates
121     if(info.clip())
122     {
123         for(int i = 0; i < total_elements; ++i)
124         {
125             result[i] = std::min<T>(std::max<T>(result[i], 0.f), 1.f);
126         }
127     }
128 
129     // set the variance.
130     if(info.variances().size() == 1)
131     {
132         std::fill_n(result.data() + idx, total_elements, info.variances().at(0));
133     }
134     else
135     {
136         for(int h = 0; h < layer_height; ++h)
137         {
138             for(int w = 0; w < layer_width; ++w)
139             {
140                 for(int i = 0; i < num_priors; ++i)
141                 {
142                     for(int j = 0; j < 4; ++j)
143                     {
144                         result[idx++] = info.variances().at(j);
145                     }
146                 }
147             }
148         }
149     }
150 
151     return result;
152 }
153 template SimpleTensor<float> prior_box_layer(const SimpleTensor<float> &src1, const SimpleTensor<float> &src2, const PriorBoxLayerInfo &info, const TensorShape &output_shape);
154 
155 } // namespace reference
156 } // namespace validation
157 } // namespace test
158 } // namespace arm_compute
159