xref: /aosp_15_r20/external/ComputeLibrary/tests/validation/reference/NormalizationLayer.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2018 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "NormalizationLayer.h"
25 
26 #include "arm_compute/core/Types.h"
27 
28 namespace arm_compute
29 {
30 namespace test
31 {
32 namespace validation
33 {
34 namespace reference
35 {
36 template <typename T>
normalization_layer(const SimpleTensor<T> & src,NormalizationLayerInfo info)37 SimpleTensor<T> normalization_layer(const SimpleTensor<T> &src, NormalizationLayerInfo info)
38 {
39     // Create reference
40     SimpleTensor<T> dst{ src.shape(), src.data_type(), 1 };
41 
42     // Compute reference
43     const uint32_t norm_size = info.norm_size();
44     NormType       type      = info.type();
45     float          beta      = info.beta();
46     uint32_t       kappa     = info.kappa();
47 
48     const int cols       = src.shape()[0];
49     const int rows       = src.shape()[1];
50     const int depth      = src.shape()[2];
51     int       upper_dims = src.shape().total_size() / (cols * rows);
52 
53     float coeff       = info.scale_coeff();
54     int   radius_cols = norm_size / 2;
55 
56     // IN_MAP_1D and CROSS_MAP normalize over a single axis only
57     int radius_rows = (NormType::IN_MAP_2D == type) ? norm_size / 2 : 0;
58 
59     if(info.is_cross_map())
60     {
61         // Remove also depth from upper dimensions since it is the dimension we
62         // want to use for normalization
63         upper_dims /= depth;
64 
65         for(int r = 0; r < upper_dims; ++r)
66         {
67             for(int i = 0; i < rows; ++i)
68             {
69                 for(int k = 0; k < cols; ++k)
70                 {
71                     for(int l = 0; l < depth; ++l)
72                     {
73                         float accumulated_scale = 0.f;
74 
75                         for(int j = -radius_cols; j <= radius_cols; ++j)
76                         {
77                             const int z = l + j;
78 
79                             if(z >= 0 && z < depth)
80                             {
81                                 const T value = src[k + i * cols + z * rows * cols + r * cols * rows * depth];
82                                 accumulated_scale += value * value;
83                             }
84                         }
85 
86                         dst[k + i * cols + l * rows * cols + r * cols * rows * depth] = kappa + accumulated_scale * coeff;
87                     }
88                 }
89             }
90         }
91     }
92     else
93     {
94         for(int r = 0; r < upper_dims; ++r)
95         {
96             for(int i = 0; i < rows; ++i)
97             {
98                 for(int k = 0; k < cols; ++k)
99                 {
100                     float accumulated_scale = 0.f;
101 
102                     for(int j = -radius_rows; j <= radius_rows; ++j)
103                     {
104                         const int y = i + j;
105                         for(int l = -radius_cols; l <= radius_cols; ++l)
106                         {
107                             const int x = k + l;
108 
109                             if((x >= 0 && y >= 0) && (x < cols && y < rows))
110                             {
111                                 const T value = src[x + y * cols + r * cols * rows];
112                                 accumulated_scale += value * value;
113                             }
114                         }
115                     }
116 
117                     dst[k + i * cols + r * cols * rows] = kappa + accumulated_scale * coeff;
118                 }
119             }
120         }
121     }
122 
123     if(beta == 1.f)
124     {
125         for(int i = 0; i < dst.num_elements(); ++i)
126         {
127             dst[i] = src[i] / dst[i];
128         }
129     }
130     else if(beta == 0.5f)
131     {
132         for(int i = 0; i < dst.num_elements(); ++i)
133         {
134             dst[i] = src[i] / std::sqrt(dst[i]);
135         }
136     }
137     else
138     {
139         for(int i = 0; i < dst.num_elements(); ++i)
140         {
141             dst[i] = src[i] * std::exp(std::log(dst[i]) * -beta);
142         }
143     }
144 
145     return dst;
146 }
147 
148 template SimpleTensor<float> normalization_layer(const SimpleTensor<float> &src, NormalizationLayerInfo info);
149 template SimpleTensor<half> normalization_layer(const SimpleTensor<half> &src, NormalizationLayerInfo info);
150 } // namespace reference
151 } // namespace validation
152 } // namespace test
153 } // namespace arm_compute
154